
A Statistics Summary-sheet 
 

      Sampling Conditions             Confidence Interval Test Statistic 
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Is n is large, say over 30? 
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If n is not large, say over 30 and X is not ∼∼∼∼ N (µµµµ, σσσσ
2
), cannot proceed with parametric statistics. 



Formulas, Distributions, and Concepts 

 

Counting and Probabilities 
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Discrete Probability Distributions   
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Continuous Probability Distributions   

Random Variable ∼ Distribution (mean, variance) 
 

Standard Normal                  Z ∼ N(0,1) 



 

Normal                                 X ∼ N(µ,σ2) 

 

 

Binomial                              X  ∼ Binomial [np, np(1-p)] 
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By CLT, if n ≥30,           
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Confidence Intervals (Interval Estimation) 
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variance for population variance.   
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Estimating Sample Size 
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Hypothesis Testing 

 
1.  Set up the appropriate null which must be in equality form, always and alternative hypotheses. 

2.  Define the rejection area. Take care as to whether the test is one-tailed or two-tailed.  Look to the alternative hypothesis to 

determine this. 

3.  Calculate the test statistic. 

4.  State Decision. 

5.  Interpret your conclusion. 

 
Hypothesis Testing (test statistics and their distributions under the null) 
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Formulas for ANOVA 
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    Overall Sample Mean 



or if the treatment sample sizes are all equal, 
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Terms and Concepts 

 
Central Limit Theorem:  If the sample size n is large,  say n ≥30 no matter what the population distribution is, the sampling 

distribution of the sample mean tends towards the normal as n gets large. 


