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In this pedagogical note we present an improved method to solve and analyze linear pro-
gramming (LP) problems. The method depends on solving a system of equations and is free
of any slack, surplus or artificial variables. The proposed method eliminates the need to
manipulate linear inequalities to introduce additional variables and works only within the
original decision variables space. We present applications of the method to handle linear

K ds: e . . L R . .

EZ{:;;OS“ optimization with varying objective function. The proposed method is easy to implement
Lp and enhances understanding of the simplex method and LP solvers transparent. We believe
Learning it is a useful alternative approach to present LP in the class room during the first few hours

of introducing the subject.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Since World-War 1I, linear optimization has been used to
solve small and large problems in almost all business dis-
ciplines. Numerous applications of linear programming (LP)
can be found in today’s competitive business environment
[1-6]. LP is a problem-solving approach to help managers
make decisions. The graphical method of solving LP prob-
lems provides a clear illustration of the feasible and non-
feasible regions, as well as, vertices. However, the graphical
method has limitations in its applicability to solve LP prob-
lems having at most two decision variables.

The simplex method is essentially a combinatorial
method and a combinatorial linear algebra over an order
field. By definition, the number of basic solutions (BSs)
associated with the solution space of AX = b is limited by
n!/[m!(n — m)!], where A is an m x n matrix and b is m x 1
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vector. Application of algebraic simplex method of LP sug-
gests finding an optimal solution to an LP by enumerating all
possible BSs. The optimum is associated with the basic fea-
sible solution (BFS) yielding the largest (smallest) objective
value for a maximization (minimization) problem.

Solving LP problems in which some constraints are in
(=) or (=) form with non-negative right-hand side (RHS)
has raised difficulties. One version of the simplex, known
as the two-phase method, introduces an artificial objective
function, which is the sum of artificial variables. The other
version adds the penalty terms, which are the sum of artifi-
cial variables with very large positive coefficients. The latter
approach is known as the Big-M method {7]. Understand-
ing the intuitive notion of artificial variables may require a
greater mathematical sophistication from managers and the
simplex methods have to iterate through many infeasible
vertices to reach an initial feasible vertex {8]. Using the dual
simplex method has its own difficulties. For example, when
some coefficients in the objective function are not dual fea-
sible, one must introduce an artificial constraint. Handling
equality constraints by the dual simplex method is tedious
because of introduction of two new variables for each
equality constraint: one extraneous slack and one surplus.
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Also one may not be able to remove some equality con-
straints by elimination at the outset, as this may violate the
non-negativity condition of some variables. In addition, de-
generacy which may cause cycling may occur in both sim-
plex and the dual simplex methods iterations {9].

In this note, we propose a new solution algorithm which
is free from any extraneous surplus/slack variables, artifi-
cial variables, artificial objective functions, or artificial con-
straints. The algorithm initially concentrates on locating BSs
by solving selected squared subsystems of equations with
size dependent on the number of decision variables and con-
straints. Then, a feasibility test is performed on the obtained
solution to be retained for further considerations. Since each
iteration in fact is solving a system of equations, the alge-
braic approach presented in this paper acts as a bridge be-
tween the graphical and the simplex method.

The Improved Algebraic Method (IAM) proposed in this
note works directly on the decision variable space in that no
new variables are introduced regardless of the restriction on
the signs of the variables. The method reduces considerably
the computational complexity because it does not include
any slackfsurplus variables and enhances understanding of
the simplex transparent. It is efficient, easy to understand,
and can be applied to much larger set of linear inequalities
than feasible by the standard algebraic approach. It is easy
to explain the technique to students while introducing the
topic. The advantage of the method is for small example
and is not practical for real-life large LP. We present several
numerical examples to illustrate the proposed method and
its applications.

2. The LP problem

Problem P: Max (or Min) ¢X

Subject to: AX<a,
BX > b,
DX =d,
X;>0,i=1,...,j,
Xi<0i=j+1,....k
X; unrestricted in sign,

i=k+1,...,n,

where matrices A, B, and D have p, q, and r rows, respectively,
with n columns and vectors c,a,b, and d have appropriate
dimensions. Therefore, there are m=(p+q+r+k) constraints
and n decision variables. It is assumed that m > n. Note that
the main constraints have been separated into three sub-
groups. Without loss of generality we assume that all RHS
elements, a, b, and d are non-negative. We do not deal with
trivial cases, such as where A=B=D =0 (no constraints), or
a=b=d =0 (all boundaries pass through the origin point).

Our purpose here is to systematically develop and present
an 1AM to have the following useful features:

» solve the system of inequalities in an efficient manner;

¢ solve an LP with varying objective function;

o provide tight bounds on the objective function cX both
maximization and minimization problems subject to the
set of constraints;

« find a set of solutions to achieve a desirable value for the
objective function cX, i.e., solving the goal-seeking prob-
lems.

3. Solving a system of linear inequalities

The solution to an LP problem is strictly based on the
theory and solution of system of linear inequalities (SLIs) [1].
The BSs to a linear program are the solutions to the systems
of equations consisting of constraints at binding position. Not
all BSs satisfy all the problem constraints. Those that do meet
all the constraint restrictions are called the basic feasible
solutions. The BFSs correspond precisely to the vertices of
the feasible region.

Definition 1. A solution to any system of equations is called
a basic solution. Those BS which are feasible are called basic
feasible solutions.

The main result of LP: The optimal solution of a bounded
LP always occurs at a BFS, i.e, one of the vertices of the
feasible region.

The importance of this fundamental theorem is that it
reduces the LP problem to a “combinatorial” problem of de-
termining which constraints out of many should be tight
(binding) by the optimal solution.

4. The ordinary simplex algebraic method

The ordinary simplex algebraic method is a complete
implicit enumerating algorithm to solve LP problems with
bounded solutions. It converts all inequality constraints into
equality constraints to obtain a system of equations by in-
troducing slack/surplus variables, converts all non-restricted
(in sign) variables to satisfy the required non-negativity con-
ditions by substituting the difference of two new variables,
and finally solves all of its square subsystems of equations.
This conversion of an LP problem into a pure algebraic ver-
sion ignores the original space of the decision variables and
treats all variables alike throughout the process thus increas-
ing the dimensionality and complexity.

Assuming an LP problem has a bounded solution; the
ordinary simplex algebraic method proceeds as follows:

1. Construction of the boundaries of the constraints set: Trans-
form all inequalities (except the restricted condition on
each variable, if any) to equalities by adding or subtract-
ing slack or surplus variables.

2. Finding all vertices: If the number of variables (including
slack and surplus) is more than the number of equations,
then set the following number of variables to zero: [(num-
ber of variables including slack and surplus)—(number of
equations)]. After setting these many variables to zero,
find the other variables by solving the resulting squared
system of equations.

3. Check for feasibility: Al slack and surplus variables must
be non-negative and non-negativity condition on each
variable should be satisfied. Determine all BFSs, vertices
of the feasible region.
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4. Selecting the optimal corner point: Among all BFSs, find the
optimal one (if any) by evaluating the objective function.
There might be multiple optimal solutions.

5. The IAM

We present an 1AM of solving an SLIs that does not re-
quire the formulation of an auxiliary LP problem and solution
algorithms such as Simplex. We provide a simple methodol-
ogy to extend the solution of SLI of one or two dimensions to
systems of higher dimensions. We are interested in finding
the vertices of the feasible region of Problem P, expressed
as a system of linear equalities and inequalities.

AX<a,
BX>b,
DX =d,

where some X; >0, some X; <0, and some X; are unre-
stricted in sign. Matrices A, B, and D as well as vectors a,b,
and d have appropriate dimensions. For the sake of con-
venience, we refer to this general system of equalities and
inequalities as a “system” and its feasible region set as S.
Therefore, the optimization problem can be expressed as

Problem P: Max (or min) f(X)
subjectto: Xe$

If the objective function is nonlinear, the optimat solution
to Problem P may be, in addition to the vertices, one of the
many stationary points on the interior, faces, or edges of the
feasible region. The interior of the bounded feasible region
is defined by the convex set of all vertices obtained. Other
relevant domains, such as faces, edges, etc., of the feasible
region are defined by appropriate subsets of these vertices.

6. Steps of the IAM

Step 1: Convert all inequalities into equalities (including
any variable restricted constraints).

Step 2: Calculate the difference between the number of
variables n and the number of equations m.

Step 3: Determine solution to all square system of equa-
tions. The maximum number of systems of equation to be
solved is: m!/{n!(m — n)!].

Step 4: Check feasibility of each solution obtained in Step
3 by using the constraints of all other equations.

The coordinates of vertices are the BFSs of the systems
of equations obtained by setting some of the constraints
at binding (i.e., equality) position. For a bounded feasible
region, the number of vertices is at most m!/[n!(m — n)!|
where m is the number of constraints and n is the number
of variables. Therefore, a BS is obtained by taking any set of
n equations and solving them simultaneously. By plugging
this BS in the constraints of other equations, one can check
for feasibility of the BS. If it is feasible, then this solution is
a BFS that provides the coordinates of a corner point of the
feasible region.

7. Numerical example

We provide an example to explain the IAM and develop
parametric representation of the feasible region for the given
SLL
Example 1. Consider the following bounded feasible region:
Xi+X2+X3<10Eq 1
3X1 +X3<24Eq2
X120Eq3
X, >0Eq 4
X320Eq5

There will be five equations and three variables yielding

10 possible combinations. The 1AM provides six vertices for
the feasible region as follows:

X4 Xy X3 Feasible? Binding equations
10 V] 0 No 1,4, and 5

8 0 0 Yes 2,4,and 5

8 2 0 Yes 1,2,and 5

0 10 0 Yes 1,3,and 5

0 8] 24 No 2,3, and 4

0 0 10 Yes 1,3, and4

0 10 0 No 2,3,and 5

7 0 3 Yes 1,2, and 4

0 ~14 24 No 1,2,and 3

0 0 0 Yes 3.4,and 5

Therefore, the six vertices are

Xi=8 Xp=8 X;=0 X1 =0 X1 =7 X3=0
Xy=0 Xy=2 X3 =10 Xy =0 Xy=0 Xp=0
X3=0 X3=0X3=0 X3=10 X3=3 X3=0

Using the parameters /1,..., /g for the six vertices, we
obtain the following parametric representation of the feasi-
ble region:

X] = 8/:] + 8;.2 + 7}.5
X2 = 2;.2 + ]0;.3

X3 =10/4 + 375

for all parameters /1, ..., 4g such thateach 7; > 0 and ¥~ 4;=1.

8. Applications to linear programs

The parametric representation of an SLI obtained from
the IAM can be used to solve linear programs as illustrated by -
a numerical example in this section. The following example
is an extension of the example presented previously.
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Example 2.

Max 4X] + 2X2 + 3X3
subject to: X{ +X; +X3<10
3X1+X3<24
X120
X520
X320

As demonstrated in Example 1, the parametric represen-
tation of the feasible region with /4, 23, A3, 44, /5, 262 O
and }" 4;=11is as follows:

X1 = 8/1] + 8).2 + 7/15
Xy =243 +1043
X3 =1044 + 345

Substituting the parametric version of the feasible region
into the objective function, we obtain:

f(2)=4Xy +2Xy + 3X3 =3241 + 364y
+ 2043 + 3024 + 37/5 (1)

The optimal solution occurs when 45=1 and all other 4;'s are
set to 0, with a maximum value of 37. The optimal solution
is (X1 =7, X3 =0, X3 = 3), one of the vertices.

Proposition 2. The maximum (minimum) points of an LP with
a bounded feasible region correspond to the maximization (min-
imization) of the parametric objective function f(/.).

Let the terms with the largest (smallest) coefficients in
f(+) be denoted by 4, and /s, respectively. Since f(4) is a
(linear) convex combination of its coefficients, the optimal
solution of f(4) is obtained by setting /| or 45 equal to 1 and
all other /; =0.

Lemma 3. The maximum and minimum points of an LP with
a bounded feasible region correspond to /) =1 and /g5 =1,
respectively.

If a polytope has a finite number of vertices, then this
result suggests that the optimal solution to an LP problem
can be found by enumerating all BFSs found by the IAM. The
optimum is associated with the BFS yielding the largest or
smallest objective value, assuming the problem is of maxi-
mization or minimization type, respectively.

8.1. Computing slack and surplus

Given that the RHS of a constraint is non-negative, the
slack is the leftover amount of a resource (<) constraint,
and surplus is the access over a requirement ( 2> ) constraint.
These quantities represent the absolute values of the differ-
ence between the RHS value and the LHS (left-hand-side)
evaluated at an optimal point. Having obtained an optimal
solution, one can compute the slack and surplus for each con-
straint at optimality. Equality constraints are always binding
with zero slack/surplus.

Since this numerical example is a three-dimensional LP,
one expects (at least) to have three binding constraints. The
binding constraints at optimality are Eqs. (1), (2), and (4):

X1+X3+X3=10
3X1 +X3=24
X;=0

The surplus values for the two non-binding constraints are
S3=7 and55=3.

8.2. Computation of shadow prices

By definition, the shadow price for a non-binding con-
straint is always zero. To compute the shadow price of bind-
ing constraints, excluding any non-negativity condition (in
this example, X3 =0), one must first solve the following RHS
parametric system of equations by plugging X5 =0,

X] +X3 :10+R1
3X1 +X3=24+R2

By setting all inequalities in binding positions and solving
the system of equations, we get the following parametric
solution:

Xy =7 - 0.5R; +0.5R,
X;=0
X3 =3+ 1.5R] - 0.5R2

The solution can be verified by substitution. For larger
problem one may use the JavaScript available using the fol-
lowing link: http://home.ubalt.edu/ntsbarsh/Business-stat/
otherapplets/PaRHSSyEqu.htm

Plugging the parametric solution into objective function,
we have:

4Xq + 2X5 + 3X3 = 37 + 2.5R; + 0.5R,

The shadow price is a derivative of the parametric opti-
mal function, i.e., U; = 2.5 and U = 0.5, for two resources
with RHS equal to 10 and 24, respectively. These shadow
prices are the solution to the following corresponding dual
problem:

Min 10U + 24U,
subject to: Uy +3U; >4
U =22
U] + Uz 2 3
Uy =20
Uy =20

The dual optimal value of 37 is equal to the optimal value
of the primal problem, as expected.

8.3. Sensitivity analysis

Notice that the parametric objective function 37+2.5Ry +
0.5R, is valid when the parametric solution satisfies all
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unused constraints at the optimal solution. In the current
numerical example, unused constraints are

X1 >0 and X3 >0

These produce the following largest set of sensitivity region
for the RHS of all the constraints simultaneously:

7 —0.5R{ +0.5R, >0 and

3+ 1.5R1 —05R; >0 (2)

8.3.1. Sensitivity ranges for the RHS of the constraints

The inequality set (2) can be used to find ranges for the
RHS values of the constraints. The range for the RHS of the
first constraint (RHS{ ) can be obtained by setting R; =0 in the
inequalities set (2). This implies that Ry <14 and Ry > - 2.
Therefore, the allowable increase and decrease in the original
value 10 for RHSy are 14 and 2, respectively, i.e. (8 < by <24).

Similarly, the range for the RHS of the second constraint
(RHS;) can be obtained by setting Ry = 0 in the inequality
set (2). This implies that R; > — 14 and R <6.

Therefore the allowable increase and decrease in the
original value 24 for RHS, are 6 and 14, respectively, i.e.
(10< by £30).

8.3.2. Sensitivity ranges for the objective function coefficients

To find the ranges for the objective function coefficients,
one may use the RHS parametric version of the dual problem;
that is:

Min 10U; + 24U; RHS
subject to: Uy +3Up 24+
U1 22+G
Uy +U23+G3
Uy =0
U, >0

As calculated earlier, the shadow prices are Uy = 2.5 and
U; = 0.5, which are the optimal solution to the dual. The
first and the third constraints are binding. The parametric
presentations of the RHS of these binding constraints are as
follows:

Uy +3U; =4+ C

Uy+U;=3+GC

Solving these equations we get the following parametric
solution:

Uy =2.5-05C; +1.5C3

Uy =05 +0.5C; ~0.5C3

The parametric objective function is 37 +7Cq +3C3 with op-
timal value of 37 for the nominal problem. Again, this para-
metric optimal solution is subject to satisfying the unused
constraints, namely,

U1>2+C2 and U2>0

These produce the following largest sensitivity region for the
objective function coefficients simultaneously:

0.5C; - C; +1.5C3> - 05 and

0.5 +0.5C; —0.5C3 >0 (3)

The sensitivity range of the coefficient of first decision vari-
able Xy, currently at 4, can be found by setting C3 =0 and
C; =0 in the inequality set (3) yielding C; <1and ¢y > - 1.
Therefore, 1 is the allowable increase or decrease for the co-
efficient of Xy, i.e. (3<Cy £5).

The sensitivity range of the coefficient of second decision
variable X,, currently at 2, can be found by setting C; =0 and
C3 =0, in the inequality set (3) yielding C; <0.5. Therefore,
0.5 is the allowable increase in X, with no limit in decreasing
the coefficient of Xy, i.e. (C <2.5).

The range for the coefficient of X3 can be found by setting
Cy =0 and C; = 0 in the inequality set (3) which yields
C(3<land (32 - % Therefore, the allowable increase and
decrease for the coefficient of X5 are 1 and % respectively,

ie (§<CG3<4).
9. Solving LP problem with changing objective function

The business environment is often unpredictable and un-
certain because of factors such as economic changes, local
government regulations, or dependence on subcontractors
and vendors. Therefore, managers often find themselves in
a dynamic, unsettled environment where even short range
plans must be constantly reassessed and the objective func-
tion incrementally adjusted.

As discussed in the previous section, one can easily obtain
a parametric representation, f(/), of a given objective func-
tion to determine the optimum value, whether maximum
or minimum. Further, bounds on the range of the objective
function value can be obtained. It can be easily seen that a
practitioner does not have to entirely resolve the problem if
the objective in the numerical example presented above is
changed to Min (instead of Max). Looking at the parametric
representation f(4) in Eq. (1), it is clear that the minimum
value of 20 occurs at 23 = 1 that presents point (X; =0,
X, =10, X3 = 0). The objective function value is bounded by
a minimum of 20 to a maximum of 37.

The parametric representation of the feasible region of
an SLI is useful in solving the corresponding LP with varying
objective. Consider the LP of Example 2 again. Now consider
a slight change in the objective function. For example, if
we decrease the third coefficient to 2.5, we have a new LP
problem:

Max 4X; +2X3 + 2.5X3
subject to: Xy + X3 +X3<10
3Xy +X3<24
Xy >0
X220
X320
The new parametric objective function is
f(2)=4X1 +2X5 + 2.5X3
=32/ + 364y + 20/3 + 25/.4 + 35.5/5 (4)
Clearly, the optimal solution occurs when /5 =1, and all
other 4's are set to 0, with the maximum value of 36. There-
fore, the optimal solution is X; = 8, X; =2, X3 =0. That is,

decreasing the third coefficient in the objective function by
a slight amount changes the optimal solution significantly.
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10. Extension to too-few constraints

As discussed earlier, the graphical method is limited in
solving LP problems having one or two decision variables.
One needs to determine all intersection points (vertices) and
examine which one among all feasible vertices provides the
optimal solution. The graphical method and the discussion
so far assume that n < m. The IAM is designed to solve multi-
dimensional LP problem (n>m) regardless the number of
constraints provided. In the following we discuss two such
cases for illustration.

Example 3 (n>m). Consider the feasible region of an SLI
with m constraints and n decision variables. Suppose n>m
then every BS has at most m non-zero decision variables, i.e.,
at least n — m decision variables must have zero value.

Max (or Min) 20Xy + 30X3 + 10X3 + 40Xy
subject to: Xy + Xy =200
X3+ X4 =100
X1+ X32150

This LP problem cannot be solved by the graphical method.
However, the algebraic method has no limitation on the LP
dimension. One can compute all BSs by setting all constraints
at binding positions:

X] +X2 =200
X3 + X4 =100
X1 +X3=150

There are n = 4 decision variables and m = 3 constraints.
Since n>m, at least n—m(=1) decision variable must be zero.
Following are the possible BSs:

X4 Xy i X3 X4 Feasible? = Objective value
0200 150 - =50 Yes 5500
200 0 =50 150" Yes 9500
1507 . 50 0. - 100 . Yes 8500
50 =150 100 0 Yes 6500

Thus, from the above table, we obtain the following bounds
on the objective function over its feasible region:

5500 < 20X; + 30X5 + 10X3 + 40X4 < 9500 (5)

Result 4. Given a bounded LP with m constraints {excluding
any sign constraints such as non-negativity conditions) and n
decision variables, if n>m, then at most m decision variables
have positive value at the optimal solution and the rest (n -
m) of the decision variables must be set at zero level. This
result holds if the problem has a unique bounded optimal
solution.

Remark 5. When adding to Example 3 the constraint Xy +
X4 > 150 it mimics an LP formulation of the transportation
problem with two origins (O and 0,) and two destinations

(Dy and D,) with the following supply and demand together
with the unit transportation costs:

The Cost Matrix

Dy Dy | Supply
Oy 20 30 200
(O 10 40 100

Demandi 150 150 1 300

Notice that this transportation problem is a balanced one,
i.e,, total supply = total demand. Therefore, at least one of
the constraints is redundant, this implies any one of the con-
straint can be deleted. Moreover, since all X; values are sup-
posed to be non-negative, a look at the table of BSs reveals
that there are only two BFSs and the minimum optimum
value is 6500.

11. Goal-seeking problems

Although some decision-makers would prefer the opti-
mal, in most practical situations, however, a decision-maker
aims at satisfying or making incremental changes rather
than optimizing. This is so, because the human mind has
a bounded rationality and hence cannot comprehend all
alternatives. In many business applications, a manager may
wish to achieve a specific achievable goal, while satisfying
the constraints of the model. In the incremental approach
to decision-making; the manager takes only small steps, or
incremental moves, away from the existing system. This is
usually accomplished by a “local search” to find a “good
enough” solution. This problem is referred to as the “satis-
fying problem”, “feasibility problem”, or the “goal-seeking”
problem. The user does not particularly want to optimize
anything so there is no reason to define an objective function.
The aim is to achieve a global improvement to a level that
is good enough, given current information and resources.

To convert the goal-seeking problem to an optimization
problem, one must first add the goal to the constraint set
by creating a dummy objective function. It could be a linear
combination of the subset of decision variables. By maximiz-
ing this objective function, one can get a feasible solution (if
one exists). By minimizing it, one might get another solution
(usually on the other “side” of the feasible region).

The proposed method with parametric representation
provides an efficient approach that deals precisely with
problems of constraint satisfaction without necessarily
having an objective function.

Example 5. Consider the following goal-seeking problem:
Goal f(X): —-X{+2X;=4
subject to: X +Xp =2
~-Xi+X321
X120
X, 20
Xy <3
Adding this goal to the constraint set and using the IAM, two

BFSs are obtained easily because the equality constraint must
be present in all squared system of equations. The vertices
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of the feasible region are

X; =0, X;=2
X;=2, Xp=3

Using the parametric representation of the goal parameters
41 and 4y for the first and the second vertices, respectively,
we get:

X{ =23
X2 = 2/..1 + 3).2

for all parameters Aq and /5 such that Aq, 2y > 0and 21 +/=

1. By substituting suitable values for these two parameters

one can generate any strategy to achieve a desirable goal.
To verify, the parametric goal is

f(A) = —Xq+2Xy =441 +473 = 4(Jq+73) =4, asexpected.
12. Conclusions

In this paper we present an improved method of solv-
ing a system of linear inequalities (SLI) that does not re-
quire formulation of an auxiliary (much larger) LP problem
to be solved by algorithms such as the standard algebraic
simplex method. We provide a simple methodology to ex-
tend the solution of SL! from two dimensions to systems of
higher dimensions. Under the proposed method, the elabo-
rate fundamental theorem of simplex method falls out as a
by-product. Moreover, it can also be used to fill the gap be-
tween the graphical method of solving LP problems and the
simplex method when teaching LP.

A business environment is dynamic. A problem solution
is valid in a limited time window only and is subject to revi-
sion in the next time window. Generally, a constraint set is
less subject to change as compared to the objective function.
For example, in production and transportation problems, the
capacity constraints may remain rather stable over a period
of time. On the other hand, profit coefficients of the objec-
tive function are inversely related to the price, which may
fluctuate, being determined by the market conditions and
competition. The proposed method can be used to optimize
LP problems with varying objective function. Given a system
of linear equalities and/or inequalities, the method provides
all vertices of the feasible region. A parametric representa-
tion of the feasible region as a convex combination of the
vertices is developed.

Sensitivity analysis is a vital component of LP. By means
of examples, we have illustrated the use of the Improved
Algebraic Method (IAM) to efficiently derive the slack and
surplus amounts for the resources of an LP. The parametric
representation quickly provides all dual prices to carry out
analysis for desirability of obtaining additional resources.
The parametric representation also allows one to study ver-
satility of the coefficients of the objective functions.

Managers face a variety of decision-making situations
while balancing resources and meeting demand. The num-
ber of constraints on the recourses varies according to the
product and the nature of problem. The 1AM can be applied
to a much larger set of linear inequalities than feasible by

the standard algebraic approach and it enhances an under-
standing and presentation of simplex transparent.

Most companies do not maintain an objective to maxi-
mize or minimize within a planning time horizon because of
too much pressure. Sometimes, the goal may be perceived as
unattainable due to the changes required to achieve it. Man-
agers often aim at an achievable goal. For example, a com-
pany might announce to their stockholders that they plan
to reduce the operational cost by 10% in the third quarter.
This is an incremental approach to optimization. In this pa-
per, we demonstrated that the 1AM can facilitate solving a
goal-seeking problem efficiently.

In summary, we provide a simple algorithm which com-
petes with the simplex and other LP software. The IAM con-
tains the following nice features:

o Itis an algebraic approach to solve a system of inequalities
that provides a bridge between the graphical method and
the simplex method, the LP software.

o It works within the decision variable space; no additional

variables such as slack/surplus/artificial variables are

added.

It provides all information that the simplex method pro-

vides; such as shadow prices.

o It competes with LP software providing slack/surplus and

sensitivity ranges for the RHS of the constraints and the

coefficients of the objective function.

It provides tight bounds on the objective function subject

to given set of constraints.

« It finds a set of solutions to achieve a desirable value for
the objective function.

o It is free from degeneracy which may cause cycling.

o It is easy to understand, easy to apply; therefore could
prove valuable as a teaching tool.

Future work should extend the proposed method for ap-
plication to an unbounded feasible region. Some areas for
future research include looking for possible refinements, de-
velopments of an efficient code for performing a compara-
tive computational study with other LP solvers. A suggested
approach is to incorporate any symbolic software, such as
Maple, into a computer algorithm to facilitate application to
large problems.
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