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Abstract: For some kinds of linearly constrained optimization problems with
unique optimal solution, such as linear programs and convex problems, the
single local optimum is also global. However, there are a broad variety of prob-
lems for which this property cannot be simply postulated or verified. The paper
presents an effective approach for the global linearly constrained optimization
problem with continuous objective function. With the help of a parametric rep-
resentation of the feasible region an equivalent unconstrained problem is con-
structed which is much easier to solve. The classical optimization procedure is
then applied to find the interior and boundary critical points. Evaluating the
objective function at these critical points and the vertices identifies the global
optimal solution. Our aim is to propose a new introduction to optimization,
the design of a general solution algorithm that is easy for the user to under-
stand and provides useful information such as global bounding of the objective
function. The algorithm and its applications are presented in the context of
some numerical examples solved by other methods.
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1. Introduction

Optimization has been of significant interest and relevance in many areas, also
in engineering optimization [16, 20, 42, 44, 45, 50]. In particular, many design
and operational problems give rise to linearly constrained optimization such as
multi-objective linear programs [10, 49], entropy maximization, quadratic pro-
grams, and the dual of the geometric programs [14]. These typical problems
are used extensively in the aerospace, automotive, electronic and chemical pro-
cess industries. While the efficient computer packages of local solvers for these
typical applications has become widespread, a major limitation is that there is
often no guarantee that the generated solutions correspond to the global op-
tima [30]. In many cases it means incurring a significant cost penalty, or even
getting an incorrect solution to a physical design or operational process such as
the calculation of chemical equilibria involving and ideal gas phase with many
species and pure condensed phases.

Linearly constrained optimization problems are extremely varied. They
differ in the form of the objective function, constraints, and in the number of
variables. Although the structure of this problem is simple, finding a global
solution – and even detecting a local solution is known to be difficult. The
simplest form of this problem is realized when the objective function is linear.
The resulting model is a linear program (LP). Other problems include fractional
[3, 48], nonlinear network models [1, 4], quadratic [47], separable, geometric [14],
convex [35] and nonconvex programs.

There are well over 400 different solution algorithms for solving different
kinds of linearly constrained optimization problems. However, there is not one
algorithm superior to others in all cases. For example in applying the Karush-
Kuhn-Tucker (KKT) condition, it may be difficult, if not essentially impossible,
to derive an optimal solution directly [32]. The most promising numerical solu-
tion algorithm is the feasible direction method, however, if objective function is
nonconvex then the best one can hope for is that it converges to a local optimal
point. Moreover, the optimum (local or global) may not be unique [9]. There-
fore the question of finding global solutions to general optimization problems
is an important one but as yet unanswered by general optimization theory in a
practical way [41, p. 34].

Scope and Purpose. There are many engineering decisions that can be for-
mulated as optimization problems and many algorithms to solve such problems.
However, these algorithms are “custom-made” for each specific type of prob-
lem. Finding the global solution for general optimization problem is not an
easy task. This paper proposes an effective explicit enumeration scheme for
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solving a large class of problems with linear constraints and explicit continuous
objective function. The key to the solution algorithm is removal of constraints
through parametric representation of the problem. The global optimal solution
is then found by computing the critical points and numerical evaluation of the
objective function at these points as well as at the vertices.

As a by-product of the proposed solution algorithm, it enables us to compute
the tight numerical bounds for a continuous objective function with the linear
constraints. The existence of such tight bounds may depend on boundedness
of feasible region and objective function.

Since the proposed solution algorithm is an enumeration method, it is the
most effective (possibly not the most efficient) method for solving this type of
problems, because, unlike other methods, it always finds the solution. The aim
and scope of the paper is to introduce a new perspective for solving certain
types of engineering optimization problems by a unified algorithm that always
finds the solution. The contents are also useful to students and instructors
teaching engineering optimization.

The remainder of this paper is organized as follows: Section 2 explains the
algorithm and Section 3 an algebraic method for finding the vertices, edges
and faces of the polylehedron, that can be used for the implementation of the
method. The algorithm and its applications are presented are presented in
Section 4 in the context of small, hand-computation numerical problems each
solved by other specialized algorithms in engineering optimization literatures.
These numerical examples also provide some notions about the efficiency of the
proposed solution algorithm. The proposed solution algorithm always finds the
optimal solution successfully while in some presented cases other methods fail.
The last section contains the conclusions with some useful remarks.

2. The Algorithm

We want to solve the following problem with linear feasible region:

Problem P. Maximize f(x), Subject to: Ax ≤ b, where some variables
xi have explicit upper and/or lower bounds and some are unrestricted in sign,
where A is m×n matrix, b is m-vector and f is a continuous function. Problem
P is a subset of a larger set of problems known as continuous global optimization
problems, see [43].

The feasible region of the problem P is the set of points that defines the
polyhedron [22, 55]. In the proposed solution we need to find all the critical
points of objective function f inside and at the boundaries of the polyhedron.
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A polyhedron with finite number of vertices can be represented in two equiv-
alent ways [11]: H-representation and V-representation.

An H-representation of the polyhedron is given by an m × n matrix A =
(ai,j) and m-vector b = (bi):

S = {x ∈ Rn; Ax ≤ b}.

An V-representation of the polyhedron is given by a minimal set of M
vertices v1,v2, . . . ,vM and N extreme rays w1,w2, . . . ,wN:

S =







x ∈ Rn; x =
M
∑

i=1

λivi +
N

∑

j=1

µjwj, λi, µj ≥ 0,
M
∑

i=1

λi = 1







.

A face of polyhedron S is a boundary set of S containing points on a line
or plane (or hyper-plane). A vertex of this polyhedron is any of its points that
can be specified as an intersection of faces. This is a point v ∈ Rn of S that
satisfies an affinely independent set of n inequalities as equations. An edge
of the polyhedron is the line segment between any two adjacent vertices. An
extreme ray w ∈ Rn is a direction such that for some vertex v and any positive
scalar µ, v + µw is in S and satisfies some set of n − 1 affinely independent
inequalities as equations.

If a feasible region is bounded, then a corresponding polyhedron is called a
polytope which has no extreme rays. Its V-representation is given by the convex
combination of the vertices.

Example 1. The polyhedron in Figure 1, defined by

−x1 + 2x2 ≤ 2 ,

x1 + x2 ≤ 4

has one vertex and two extreme rays:

v1 = (2, 2), w1 = (−2,−1), w2 = (1,−1),

which indicates that its parametric representation is given by

(x1, x2) = (2 − 2µ1 + µ2, 2 − µ1 − µ2), µ1, µ2 ≥ 0 .

For example, the unbounded edge defined by the vertex v1 and the extreme
ray w1 can be represented as

(x1, x2) = (2 − 2µ1, 2 − µ1), µ1 ≥ 0 .
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Figure 1: Unbounded polyhedron

The parametric representation of the objective function f is given by:

f(x) = f(x(λ, µ)) = f(λ, µ).

Critical point of a continuous function is a point where the first partial
derivatives are zero or undefined.

In the proposed solution algorithm we need to find critical points. It is nec-
essary for the domain to be an open set for the definition of derivative. There-
fore, we solve unconstrained problems over some relevant open sub-domains
of the feasible region. First, we find critical points on the interior points of
the feasible region. Next, we evaluate the objective function at the vertices of
the feasible region. Finally, we find critical points on interior of the faces and
edges (i.e., line segments) of the feasible region. The global optimal solution
is found by comparing the functional values at the critical points and at the
vertices. Therefore, in solving an n dimensional problem, we solve some uncon-
strained optimization problems in n, n − 1, . . . , 1 dimensions. Thus, removing
the constraints by the proposed algorithm reduces the constrained optimization
to unconstrained problems which can be more easily dealt with.

The following provides an overview of the algorithm’s process strategy:

Phase 1. Find the critical points of the objective function and select those
which are feasible by checking the constraints.

Phase 2. Find the V-representation of the feasible region, its edges and
faces. Evaluate the objective function at the vertices.

Phase 3. Find the critical points of the objective function over the open
domains: faces, edges. Then evaluate the objective function at these points.

Phase 4. Pick the global solution and construct the numerically tight
bounds for the problem.

The second phase of the algorithm can be implemented by one of the algo-
rithms for finding the vertices, extreme rays, edges and faces of the polyhedron.



398 H. Arsham

There are several approaches to the problem of generating all the vertices of
the polyhedron. The double description method [38] involves building the poly-
hedron sequentially by adding the defining inequalities one at a time. Recent
algorithms and practical implementations of this method have been developed
by Fukuda and the others [19, 28, 29]. Another method for finding all the
vertices and extreme rays of the polyhedron involves pivoting around the skele-
ton of the polyhedron. An efficient method using this approach is the reverse
search method by Avis and Fukuda [13] and the revisited version [11]. Some
other methods are described in [2, 12, 22, 25, 36, 54, 55]. The approach pre-
sented in [5] is based on an affine algebraic method, which is easy to understand
and implement as described in the following section.

In Phase 3 of the algorithm we have to find the critical points over open
domains. We can construct the parametric version of the objective function
over each domain and look for its critical points. But since there may be many
such domains it is more efficient to use the following procedure.

Suppose that the feasible region is defined by M vertices and N extreme
rays. We will need partial derivatives of objective function f over each λi,
1 ≤ i ≤ M and each µj, 1 ≤ j ≤ N . We can find them by using the chain-rule:

∂f

∂λi

=

n
∑

k=1

∂f

∂xk

·
∂xk

∂λi

,

∂f

∂µj

=

n
∑

k=1

∂f

∂xk

·
∂xk

∂µj

.

Then, suppose the open domain is defined by a subset of the vertices
v1, . . . ,vs and a subset of extreme rays w1, . . . ,wt. To find the critical points
on this domain we have to find the critical points of the parametric objective
function over the domain

λ1 + . . . + λs = 1, λs+1 = . . . = λM = µt+1 = . . . = µN = 0,

0 < λ1, . . . , λs < 1, µ1, . . . , µt > 0 .

We can construct the Lagrangian

L(λ1, . . . , λs, µ1, . . . , µt, c) = f(λ1, . . . , λs, µ1, . . . , µt) + c(1 − λ1 − . . . − λs)



TIGHT BOUNDING OF CONTINUOUS FUNCTIONS... 399

In order to find the critical points we have to solve the following system:

∂L

∂λ1

=
∂f

∂λ1

− c = 0 ,

...
∂L

∂λs

=
∂f

∂λs

− c = 0 ,

∂L

∂µ1

=
∂f

∂µ1

= 0 ,

...
∂L

∂µt

=
∂f

∂µt

= 0 ,

∂L

∂c
= 1 − λ1 − . . . − λs = 0 .

By eliminating c from the system we get

∂f

∂λ1

=
∂f

∂λ2

= . . . =
∂f

∂λs

,

∂f

∂µ1

=
∂f

∂µ2

= . . . =
∂f

∂µt

= 0 ,

λ1 + λ2 + . . . + λk = 1 .

It means that if we are looking for the critical points in the open domain
defined by a subset of the vertices v1, . . . ,vs and a subset of extreme rays
w1, . . . ,wt, then we have to solve the system:

∂f

∂λ1

=
∂f

∂λ2

= . . . =
∂f

∂λs

,

∂f

∂µ1

=
∂f

∂µ2

= . . . =
∂f

∂µt

= 0 ,

λ1 + λ2 + . . . + λs = 1 ,

λi, µj ≥ 0, 1 ≤ i ≤ M, 1 ≤ j ≤ N .

In order to find the critical points is some open domain we can use the partial
derivatives that were found once for all the domains.

In the last phase of the algorithm we have to compare the functional values
at the critical points and the vertices. We pick the global solution. The pro-
posed algorithm also enables us to compute the tight numerical bounds for a
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continuous objective function with the linear constraints, because it discovers
all critical points and vertices that are candidates for global minimums and
maximums.

Not all problems have to go through all three steps. For example, if we
are looking for a maximum, the objective function is concave and the interior
critical point has been found, then we know that this is the optimal point.

3. Finding the Vertices and Domains of the Feasible Region

The graphical method of solving a system of linear inequalities, usually illus-
trated in textbooks, is limited to problems with one or two decision variables.
However, it provides a clear visual understanding of the feasible region as well
as the location of its vertices. While having a visual understanding of the prob-
lem is conducive, by an algebraic approach it becomes possible to solve higher
dimension problems (i.e. three or more decision variables).

In this section we provide an easy to implement algebraic methodology for
solving a linear system of inequalities to find all vertices of the feasible region.
The methodology is applicable even when some or all of the decision variables
are unrestricted in sign. The algebraic method for finding all the vertices of the
feasible region is as follows:

Construct the Boundaries. Transform all inequalities (except sign-
restrictions on decision variables, if any) to equalities by adding/subtracting
slack/surplus variables. Construction of the boundary of the sign-restricted
decision variables is included in the next step.

Find all Basic Solutions. Let T = the total number of variables including
slack/surplus variables, E = the number of equations, and R = the total number
of slack/surplus variables and sign-restricted decision variables. Set any (T−E)
variables to zero. The variables to be set to zero are the slack/surplus and sign-
restricted decision variables (any xi ≥ 0, or xi ≤ 0) only. After setting (T −E)
variables to zero, solve the resulting squared system of equations to obtain the
values of the remaining variables. Note that the maximum number of basic
solutions is:

R!

(T − E)!(R + E − T )!
,

where the symbol ! stand for Factorial.

Check For Feasibility. All slack/surplus variables must be nonnegative.
The sign-restriction on each decision variable, if any, must be satisfied. The
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obtained set of basic feasible solutions constitutes the vertices of the bounded
feasible region defined by the system.

Identification of Domains of the Feasible Region. As pointed out
earlier, if the objective function is nonlinear, the optimal solution to problem P

may be one of the stationary points of the feasible region. We need to identify
all relevant open domains of the feasible region to compute all stationary points
using the gradient. The interior of the feasible region can be defined by the full
set of the vertices obtained. The interior of other relevant domains such as the
faces, edges, etc. of the feasible region can be defined by appropriate subsets
of these vertices. Accordingly, we present the following method to identify all
such subsets of vertices through a constraint-vertex table.

Let n be the number of decision variables in the problem formulation.
Construct a table with one column for each vertex and one row for each con-
straint including the sign-restriction conditions, if any, on the decision variables.
Record in each cell of the table whether that vertex binds that constraint or not.
First, obtain the sets of vertices that bind any one common constraint; each
set so obtained defines a face in a three dimensional case and an edge in a two
dimensional case. Next, obtain the sets of vertices that bind any two common
constraints; each set so obtained defines an edge in the three dimensional case.
Third, obtain the sets of vertices that bind any three common constraints, and
so on; but, not beyond (n − 1) common constraints.

Example 2. Consider the following feasible region:

x1 + x2 + x3 ≤ 10 ,

3x1 + x3 ≤ 24 ,

x1, x2, x3 ≥ 0 .

The vertices, edges and faces of this feasible region are graphically illustrated
in Figure 2.

Note that, in Figure 2, the feasible region is defined by a set of five con-
straints including the sign-restrictions on the three decision variables. The
feasible region has six vertices which can be found by the algebraic method
presented earlier as is shown in Table 1.

Therefore, the vertices of the feasible region are:

v1 = (8, 0, 0), v2 = (8, 2, 0), v3 = (0, 10, 0),

v4 = (0, 0, 10), v5 = (7, 0, 3), v6 = (0, 0, 0) .

Construction of the constraint-vertex table: Note that, in Figure 2, the
feasible region has five faces, nine edges and, of course, one interior. Each vertex
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Figure 2: Feasible region for Example 2

is uniquely defined by three constraints at binding position. All vertices binding
one common constraint define each face. All vertices binding two common
constraints define each edge. And, of course, all six vertices together define the
interior of the feasible region. Table 2 shows the construction of constraint-
vertex table.

Vertices binding one common constraint (i.e. faces of the feasible region)
are shown in Table 3 and vertices binding two common constraints (i.e., edges
of the feasible region) in Table 4.

4. Numerical Examples

In the following examples we demonstrate how the proposed algorithm can be
used to solve general linearly constrained optimization problems.

Example 3. The following quadratic optimization with inequality con-
straint is attempted to solve in [23, pp. 70-82] using the Wolf Method.

Max f(x1, x2) = 2x1 + x2 + 3x1x2 − x2
1 − 2x2

2 ,

subject to: x1 + 2x2 ≤ 10 ,

x1 + 3x2 ≥ 3 ,

x1, x2 ≥ 0 .
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x1 x2 x3 s1 s2 Feasible?

8 0 0 2 0 yes

8 2 0 0 0 yes

0 10 0 0 24 yes

0 0 10 0 14 yes

0 0 24 -14 0 no
10 0 0 0 -6 no
7 0 3 0 0 yes

0 -14 24 0 0 no
0 0 0 10 24 yes

Table 1: Finding the vertices by the algebraic method

Constraint v1 v2 v3 v4 v5 v6

x1 + x2 + x3 = 10 no yes yes yes yes no
3x1 + x3 = 24 yes yes no no yes no
x1 = 0 no no yes yes no yes
x2 = 0 yes no no yes yes yes
x3 = 0 yes yes yes no no yes

Table 2: Construction of constraint-vertex table

The partial derivatives of the objective function are

∂f

∂x1

= 2 − 2x1 + 3x2 ,

∂f

∂x2

= 1 + 3x1 − 4x2 .

The gradient vanishes at x1 = −11, x2 = −8 which is not feasible. It means
that there are no feasible interior critical points.

The vertices of the feasible region and the corresponding objective function
values are listed in Table 5.

The edges of the polyhedron are

e1 = (v1,v2), e2 = (v2,v3), e3 = (v3,v4), e4 = (v1,v4) .

The parametric representation of the feasible region is:

(x1, x2) = (3λ1 + 10λ2, 5λ3 + λ4),
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One common constraint Vertices

x1 + x2 + x3 = 10 v2, v3, v4, v5

3x1 + x3 = 24 v1, v2, v5

x1 = 0 v3, v4, v6

x2 = 0 v1, v4, v5, v6

x3 = 0 v1, v2, v3, v6

Table 3: Faces of the feasible region

Two common constraints Vertices

x1 + x2 + x3 = 10, 3x1 + x3 = 24 v2, v5

x1 + x2 + x3 = 10, x1 = 0 v3, v4

x1 + x2 + x3 = 10, x2 = 0 v4, v5

x1 + x2 + x3 = 10, x3 = 0 v2, v3

3x1 + x3 = 24, x1 = 0 No edge
3x1 + x3 = 24, x2 = 0 v1, v5

3x1 + x3 = 24, x3 = 0 v1, v2

x1 = 0, x2 = 0 v4, v6

x1 = 0, x3 = 0 v3, v6

x2 = 0, x3 = 0 v1, v6

Table 4: Edges of the feasible region

where λ1 + λ2 + λ3 + λ4 = 1, 0 ≤ λ1, λ2, λ3, λ4 ≤ 1.

For finding the critical points on the edges we will need partial derivatives
of f over λ1, λ2, λ3 and λ4. By using the chain-rule we get:

∂f

∂λ1

= 3
∂f

∂x1

= 6 − 6x1 + 9x2 ,

∂f

∂λ2

= 10
∂f

∂x1

= 20 − 20x1 + 30x2 ,

∂f

∂λ3

= 5
∂f

∂x2

= 5 + 15x1 − 20x2 ,

∂f

∂λ4

=
∂f

∂x2

= 1 + 3x1 − 4x2 .

To find the critical points on the interior of the edge e2 = (v2,v3) we have
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vertex its coordinates f(x)

v1 (3,0) -3
v2 (10,0) -80
v3 (0,5) -45
v4 (0,1) -1

Table 5: Vertices and function values at the vertices for Example 3

to solve the system
∂f

∂λ2

=
∂f

∂λ3

,

over the domain λ2 + λ3 = 1, 0 < λ2, λ3 < 1, λ1 = λ4 = 0. We get

20 − 20x1 + 30x2 = 5 + 15x1 − 20x2 .

Since x1 = 10λ2 and x2 = −5λ2+5, the critical point is x1 = 53/12, x2 = 67/24
with the objective function value 13.52.

There is one more critical point on the edge e4 = (v1,v4) with objective
function value 3.05. On the remaining edges there are no critical points.

Therefore, the optimal solution occurs at x1 = 53/12, and x2 = 67/24 with
an optimal value of 13.52. The solution given in the above reference is x1 = 9/8,
and x2 = 5/8 with objective value of 47/16 = 2.94 which is inferior compared
with the global solution obtained by the proposed approach.

Tight bounds of the objective function over the feasible region are:

−80 ≤ f(x1, x2) ≤ 13.52 .

Example 4. The following non-linear fractional program is from [39],
which is solved by a specialized algorithm therein.

Min f(x1, x2, x3, x4) =
(2 − x1 − x2 − x3 − x4)

2

(2 − x1)2
,

subject to: x1 + x2 + x3 + x4 = 1.5 ,

x1 − x3 = 0 ,

x1 + x2 − x4 = 0 ,

x1, x2, x3, x4 ≥ 0 .

From a study of the feasible region, we realize that the denominator of
f does not vanish, therefore the problem is a continuous optimization. The
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feasible region has two vertices (Table 6), found by solving 3 equations with
4 unknowns while setting at least any one variable to zero then checking for
feasibility by substitution.

vertex its coordinates f(x)

v1 (0, 1/2, 1/2, 1/2) 1/16
v2 (3/4, 0, 0, 3/4) 4/25

Table 6: Vertices and function values at the vertices for Example 3

The feasible region consists of a line segment joining the two distinct ver-
tices. Therefore, the parametric representation of the feasible region is:

(x1, x2, x3, x4) = (3/4λ2, 1/2λ1, 1/2λ1, 1/2λ1 + 3/4λ2),

for all λ1, λ2 ≥ 0, λ1 + λ2 = 1.
By substituting λ1 = 1− λ2, the parametric representation of the objective

function for the interior points is:

f(λ2) =
1

(8 − 3λ2)2
,

over the open domain 0 < λ2 < 1. The derivative of f(λ2) does not vanish
within its domain, therefore there is no interior critical points for this problem.

Evaluating the objective function at vertices indicates that the optimal
solution is at the vertex v1 with objective function value of 1/16. Therefore,
the objective function is bounded:

1/16 ≤ f(x1, x2, x3, x4) ≤ 4/25,

over the feasible region.

Example 5. This example shows the use of proposed algorithm in the
case of unbounded feasible region. The problem is from [42, pp. 257-263], which
is solved therein by the generalized reduced gradient method. We are looking
for

min f(x1, x2) = −2x1 − 4x2 + x2
1 + x2

2 + 5

subject to the same constraints as in Example 1. The feasible region for this
example is drawn on Figure 1.

The gradient of the objective function is (−2 + 2x1,−4 + 2x2). It vanishes
at x1 = 1, x2 = 2 which is not feasible. Therefore there is no interior critical
point for this problem.
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Feasible region has only one vertex v1 = (2, 2) with the objective function
value of 1. The polyhedron is unbounded and has two unbounded edges:

e1 = (v1,w1), e2 = (v2,w2).

Parametric representation of the feasible region is given by

(x1, x2) = (2 − 2µ1 + µ2, 2 − µ1 − µ2), µ1, µ2 ≥ 0.

Partial derivatives of the objective function over each µ are

∂f

∂µ1

= 8 − 4x1 − 2x2 ,

∂f

∂µ2

= 2 + 2x1 − 2x2 .

To find the critical points on the interior points of unbounded edge e1 =
(v1,w1), where w1 = (−2,−1) is an extreme ray, we have to find the solution
of

∂f

∂µ1

= 8 − 4x1 − 2x2 = 0 ,

over the domain µ1 > 0, µ2 = 0.
Since x1 = 2 − 2µ1 and x2 = 2 − µ1, we find the critical point x1 = 6/5,

x2 = 8/5 with the objective function value of 1/5. Similary, we find out that
there is no critical point on the remaining edge.

Because we are looking for a minimum, the global optimal solution is: x1 =
1.2 and x2 = 1.6 with the optimal value 0.2. The problem has no upper bound.

More applications of the proposed solution algorithms to engineering opti-
mization are available in [8], including problems from [46], pp. 837-858; [21];
[44], pp. 463-465; and [50], pp. 86-92. In almost all cases, the proposed method
produces better solution than found using the specialized and diverse techniques
therein.

5. Conclusion

We have presented a new solution algorithm for the linearly constrained global
optimization problems with continuous objective function. For a polyhedron
specified by a set of linear equalities and/or inequalities, the proposed solution
algorithm utilizes its parametric representation. This parametric representation
of the feasible region enables us to solve a large class of optimization problems.



408 H. Arsham

The key to this generalized solution algorithm is that the constrained optimiza-
tion problem is converted to an unconstrained optimization problem through a
parametric representation of the feasible region.

It favorably compares with other methods for this type of problems. The
proposed algorithm, unlike other general purpose solution methods, such as
generalized reduced gradient, guarantees globally optimal solutions, it has sim-
plicity, potential for wide adaptation, and deals with all cases. However, this
does not imply that all distinction among problems should be ignored. One can
incorporate the special characteristic of the problem to modify the proposed al-
gorithm in solving them.

While the Lagrange and KKT (penalty-based) methods “appear” to remove
the constraints by using a linear (or nonlinear) combination of the constraints
in a penalty function, the proposed solution algorithm, however, uses the linear
convex combination of vertices to remove the constraints. The main drawback
for the proposed algorithm is that all the vertices of the feasible region have to
be found.

The main advantages of the presented algorithm are that it covers all lin-
early constrained optimization problems and it always finds the optimal so-
lution. There are many problems in the literature for which the proposed
algorithm finds optimal solution and others do not.

A computerized version with some possible refinements is needed to handle
large-scale problems and special cases, such as incorporating efficient and effec-
tive numerical techniques for finding the critical points for implicit functional
problems. An immediate future work is to study other algorithms and to test
and develop efficient computerized version of our proposed effective method.
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