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Abstract : 
It is well-known that many business administration decision problems can

be formulated as optimization problems.  There are well over four hundred algo-
rithms to solve such problems.  However, these algorithms are custom-made for
each specific type of problem.  This has lead to classification of problems, such as
linear, fractional, quadratic, convex and non-convex programs. This paper pres-
ents a simple alternative approach to obtain global solutions to bounded linearly
constrained optimization problems with differentiable objective functions. We pro-
pose an effective explicit enumeration scheme for solving a large class of problems
with linear constraints and a differentiable objective function.  The primary inten-
tion of this paper is to provide an optimization tool that can be understood easily
and applied to a wide range of problems. The unified approach is accomplished by
converting the constrained optimization problem to an unconstrained optimization
problem through a parametric representation of its feasible region.  The proposed
algorithm has the following useful features.  It is a general-purpose algorithm; i.e.,
it employs one common treatment for all cases; it guarantees global optimization
in each case unlike other general-purpose local optimization algorithms; it has
simplicity because it is intuitive and requires only first order derivatives (gradient);
and it provides useful information for sensitivity analysis. The solution algorithm
and its applications to finance, economics, marketing, and production and opera-
tions management are presented in the context of numerical problems already
solved by other methods.
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1. Introduction
Many business administration problems lend themselves to the

application of constrained optimization techniques.  From the manag-
er’s perspective, a better understanding of optimization techniques
would prove most helpful in arriving at well-reasoned decisions.
Unfortunately, even though most managers and business students have
the basic calculus skills necessary to understand and learn such tech-
niques, training in optimization theory is receiving little attention. 

Problem Statement:
Global optimization is concerned with the characterization and

computation of global minima or maxima of nonlinear functions. Such
problems are widespread in mathematical modeling of real world sys-
tems for a very broad range of applications, Thi et al (2002). 

We define a standard global optimization problem as follows,
Horst et al (1995):

Given a nonempty set D ℜ n and a continuous function f  find
at least one point x* ∈ D satisfying f (x*) ≤  f (x) for all x ∈ D , or show
that such a point does not exist.

Standard optimization techniques have not been successful in solv-
ing these problems because they use only local information and hence
cannot be expected to provide global optimality criteria Horst and Tuy
(1996) and Barrientos et al (2000).  Such algorithms usually obtain a
local minimum that is global only when certain conditions are satis-
fied, such as objective function and feasible region being convex.
Moreover, the problem of checking local optimality for a feasible point
and the problem of checking if a local minimum is strict are not easy
tasks. Other problems regarding global optimization are that the opti-
mum is often attained at the boundary of the feasible region and the
optimum need not be unique. 

In this paper we wish to present an alternative approach for solving
linearly constrained global optimization problems that are the subset of
general global optimization problems: 
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Problem P: Max f(X)
subject to:  AX ≤ a, BX  ≥ b, DX  = d,

with the possibility that some decision variables Xj ≥ 0,  some

Xj ≤ 0, and some Xj unrestricted in sign

where f(X) is a continuous function, and the matrices A, B, and D
and the vectors a, b, and d have  appropriate dimensions. 

Indeed, linearly constrained optimization problems are extremely
varied.  They differ in the form of their objective function, the con-
straints, and in the number of decision variables. Moreover,  the gen-
eral optimization represented by Problem P has very diverse applica-
tions.  Linearly constrained problems are typical of the business opti-
mization models. These business decision models include the trans-
portation problems, Arsham (1992), project management, Arsham
(1993), network optimization, Arsham (1995), fractional optimization,
Arsham (1990), product variety and ordering, Jayaraman and
Srivastava (1998), and grouping of customers for better allocation of
resources, Tyagi and Das (1999). 

Although the structure of Problem P is simple, finding the global
optimal solution - and even detecting a local optimal solution - is well-
known to be difficult.  The simplest form of this problem is realized
when the function f(X) is linear.  The resulting model is a linear pro-
gram (LP).  Other problems, where f(X) is nonlinear, include fraction-
al, quadratic, convex and non-convex programs. There are well over
four hundred different algorithms for solving different kinds of linear-
ly constrained optimization problems.  However, there does not exist
an algorithm that is generally superior to all others, nor does any one
algorithm guarantee global optimal solution in all cases. Another prob-
lem regarding global optimization is that optimum is often attained at
the boundary of feasible region and that more than one optimum can
exist. 

In some cases, applying the optimality conditions, such as the



KarushKuhnTucker conditions, see e.g., Hillier and Lieberman (1995),
it may be difficult, if not impossible, to derive the optimal solution.
The most promising solution algorithm appears to be the feasible
direction method.  However, if f(X) is non-convex, then the best one
can hope for is that it converges to a local optimal solution. 

In the proposed solution approach, if the objective function f(X) is
nonlinear, we need to find all stationary points. However, since the
gradient (first order derivative) of a function is not defined at the
boundary on a closed domain, we solve unconstrained problems over
some relevant open domains.  These relevant open domains are identi-
fied through a constraint-vertex table.  First, we find stationary points
in the interior of the bounded feasible region.  Next, we find station-
ary points in the interior of the faces of the feasible region, then in the
interior of the edgesof the feasible region.  Finally, by evaluation of
the objective function at the stationary points and at the vertices of the
feasible region, the global optimal solution is found. Thus, the removal
of the constraints by the proposed algorithm reduces the constrained
optimization problem to some unconstrained optimization problems,
which can be easily dealt with using the gradient.

An algorithm that is generally superior to all others does not exist,
nor does any one algorithm guarantee global optimal solution in all
cases. It requires continuous objective functions, however, it allows
the possibility that the objective function may be non-differentiable at
a finite number of feasible points, i.e., almost differentiable objective
function.

Since problem P is too complex and cannot be solved generally by
the existing methods, we propose a unified general-purpose solution
algorithm to find the global solution. 

The remainder of the paper is organized as follows.  In the follow-
ing section we present the current state of optimization applications in
business administration. Section 3 presents the algebraic method and
the constraint-vertex table.  The parametric representation and the
solution strategy are developed in Section 4.  The applications demon-
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strating its ease of use to finance, economics, marketing, and produc-
tion are presented in Section 5. The last section provides concluding
comments and some useful remarks. 

2. Cur rent State of Optimization Applications in
Business Administration

This section presents the current state of optimization applications
in finance. However its findings apply also to economics, marketing,
and production and operations management areas, see e.g., Arsham
and Stanton (2003). 

Almost all finance textbooks avoids the complexities of the alloca-
tion problem entirely, and use pictorial approaches to explain how the
frontier of efficient investment portfolios can be constructed. By plot-
ting the expected returns of all possible portfolios in relation to their
respective variances, and by drawing an envelope around the portfolios
that has the largest return for any level of variance. Doing so, a graph
emerges that depicts the portfolios that generate the greatest expected
return for any given level of variance. Although this approach
describes the nature of the problem, the investor’s choice of portfolio
weights remains a second-stage decision. What is not pointed out is
that the investor would need to compute the returns and variances of
an infinite number of portfolios to implement this approach. Even if
the decision-maker is able to construct the frontier using this pictorial
approach, the actual selection process requires the additional step of
constructing a map of the investor’s indifference curves and finding a
tangency between the indifference curves and the efficient set of port-
folios. Furthermore, the challenges presented in constructing the indif-
ference map are non-trivial.  

A critical assessment of the more advanced textbooks reveals that
most of the mathematical details provided are relegated to appendices.
For the most part, the explanations offered are prohibitively complex,
difficult to understand, computationally tedious, generally just descrip-
tive in nature, and often provide more questions than answers. More
troubling is that even with a higher level of mathematical content, key



components of the approaches may be omitted on the grounds that they
are beyond the scope of the textbook. As an example, Elton et al
(2003) outline the critical-line approach to solving the investment
problem. This algorithm requires the determination of corner points at
which the objective function changes direction, but there is no expla-
nation as to how these corner points are determined. The authors pro-
vide interested readers with a reference that explains how to find the
corner points, but without the corner points the algorithm can not be
implemented. In a similar fashion, Sharpe et al (1999) claim that the
critical-line method is beyond the scope of the book. 

It may be feasible for students to learn how to apply Karush-Kuhn-
Tucker (KKT) conditions to solve problems of this type, but the nec-
essary knowledge to do so correctly –in particular, to recognize when
the conditions are violated– may be challenging. Elton et al. (2003)
provide examples that apply KKT conditions, but, without a substan-
tial amount of effort, the students’ level of understanding is unlikely to
be enhanced, and in any case, the approach is quite laborious.

Taking all of the existing textbooks together, they still fail to pro-
vide easy to implement decision-making tools and do little to advance
the intuition underlying constrained optimization problems. This is
most unsatisfactory indeed. The end result is that the current textbook
treatment does not provide students with an approachable means of
mastering this important and useful topic. This trend is unfortunate
because decision-making skills and intuition can be greatly improved
at relatively low intellectual cost. 

We consider the manager’s primary objective is a methodology
that provides a prescriptive, rather than a purely descriptive, solution.
To make this workable, it is crucial to provide an explanation that is
simpler to teach and understand, that will enhance the reader’s ability
to make better decisions, and that will provide the intuition necessary
to understand complex optimization problems.  The key to addressing
this problem is to provide a simple and easily implemented algorithm
that requires little mathematical sophistication. Once a decision-makerSScientific Journal of 
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has mastered this approach, he or she will have a far better understand-
ing of optimization problems in general, and this will allow them to
evaluate more adequately any proposed solutions presented by better-
trained analysts or other consultants. It is possible to provide a bridge
between an analyst with a high level of mathematical training and a
manager faced with the difficulty of making the final decision.

This paper presents a simple algorithm for determining the global-
ly optimal solution to linearly constrained optimization problems. It
requires only the most basic mathematical skills; so, it is approachable
by a wide range of business students. Obvious applications include
portfolio selection, economics, marketing, and production problems.
The algorithm will prove useful also as an introduction to optimization
prior to introducing more advanced topics.

The proposed algorithm relies on evaluation of the objective func-
tion. The need to compute the Hessian is eliminated. Consequently,
managers and students who are not mathematics majors easily under-
stand it. The only prerequisite is an understanding of the basic calcu-
lus needed to find critical points of a function.  In addition to its over-
all simplicity, the algorithm has several other attractive features. It is a
general-purpose approach applicable to all linearly constrained opti-
mization problems. And, unlike other methods, such as the KKT con-
ditions, it guarantees that the solution is globally optimal. The algo-
rithm also provides useful information such as all of the critical points
of the objective function which in turn, provide tight upper and lower
bounds over the feasible region.

3. The Identification of the Vertices, Edges, and Faces of the
Bounded Feasible Region

As pointed out earlier, if the objective function is nonlinear, the
optimal solution to Problem P may be one of the stationary points on
the interior, faces, edges, etc. of the feasible region in addition to the
vertices. The interior of the feasible region is defined by the full set of
the vertices obtained.  Other relevant domains, such as faces, edges,
etc. of the feasible region are defined by appropriate subsets of these



vertices.   Accordingly, we present the following method to identify all
such subsets of vertices using a constraintvertex table. consider the fol-
lowing feasible region: 

X1 + X2 + X3 ≤ 10, 3X1 + X3 ≤ 24, X1 ≥ 0, X2 ≥ 0, X3 ≥ 0.

The vertices, edges and faces of this feasible region are shown in
the following figure. 

Note in Figure 1 that the feasible region is defined by a set of five
constraints, which includes the three signed-variables. The feasible
region has six feasible vertices. The coordinates of these vertices are
the basic feasible solution of the systems of equations obtained by set-
ting some of the constraints at binding (i.e., equality) position.
Therefore, by taking any three of the equations and solving them
simultaneously one obtains a basic solution (if exists). By plugging
this basic solution in the constraints of other equations, one can check
for feasibility of the basic solution. If it is feasible, then this solution is
a basic feasible solution that provides the coordinates of a corner point
of the feasible region.  For a bounded feasible region, the number of
vertices is at most combinatorial Cp

q where p is the number of con-SScientific Journal of 
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straints and q is the number of variables, p ≥ q.  Since in the large-scale
problems the number of vertices could be huge, the proposed algo-
rithm in this paper is well suited for small-size problem such as those
appeared often in business textbooks. 

To illustrate the procedure, consider all of the constraints at bind-
ing position, i.e., all with equality (=) sign. This produces the follow-
ing equations:

X1 + X2 + X3 = 10

3X1 + X3 = 24

X1 = 0

X2 = 0

X3 = 0.

Here we have p=5 equations with q=3 unknowns.  In terms of a “bino-

mial coefficient”, there are at most C5
3 = 5! / [3! (5-3)!] = 10 basic

solutions. Solving the six resultant systems of equations, we have: 
Table 3.1: All the Basic Solutions
Therefore, there are m = 6 vertices, denoted by (Vi, i = 1, .., 6) are: 

Equations (X1, X2, X3) Constraints
Checking Feasible?

1, 2, 3 0, -14, 24 4, 5 No
1, 2, 4 7, 0, 3 3, 5 Yes
1, 2, 5 8, 2, 0 3, 4 Yes
1, 3, 4 0, 0, 10 2, 5 Yes
1, 3, 5 0, 10, 0 2, 4 No
1, 4, 5 10, 0, 0 2, 3 Yes
2, 3, 4 0, 0, 24 1, 5 No
2, 3, 5 No solution ---- No
2, 4, 5 8, 0, 0 1, 3 Yes
3, 4, 5 0, 0, 0 1, 2 Yes



Table 3.2: All the Feasible Vertices

Construction of the ConstraintVertex Table:
Let n be the number of decision variables in the problem formula-

tion.  Construct a table with one column for each vertex and one row
for each constraint, including the signrestriction conditions on the
decision variables. Record in each cell of the table whether that vertex
binds that constraint or not. First, obtain the sets of vertices that bind
any one common constraint; each set so obtained defines a face in a
three dimensional case and an edge in a two dimensional case. Next,
obtain the sets of vertices that bind any two common constraints; each
set so obtained defines an edge in the three dimensional case. Third,
obtain sets of vertices that bind any three common constraints, and so
on, but, not beyond (n1) common constraints.

For our numerical example note that, the feasible region is defined
by a set of five constraints, which includes the three restricted-in-sign
decision variables.  The feasible region has six vertices that represent
the basic feasible solutions.  The feasible region has five faces, nine
edges, and, of course, one interior set.   Each vertex is uniquely defined
by three constraints at binding (i.e., equality) position. Vertices bind-
ing one common constraint define each face. Vertices binding two
common constraints define each edge. And, of course, all six vertices
together define the interior of the feasible region. 
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V1 X1 = 7 X2 = 0 X3 = 3

V2 X1 = 8 X2 = 2 X3 = 0

V3 X1 = 0 X2 = 0 X3=10

V4 X1=10 X2 = 0 X3= 0

V5 X1 = 8 X2 = 0 X3 = 0

V6 X1 = 0 X2 = 0 X3 = 0
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        Vertex Number  V(i)             
Constraints 1     2      3      4     5       6

X1 + X2 + X3 ≤ 10      yes   yes   yes  yes  no     no

3X1 + X3 ≤ 24            yes   yes    no   no   yes   no

X1 ≥ 0                         no    no     yes  yes  no    yes

X2 ≥ 0                        yes    no     yes  no   yes   yes

X3 ≥ 0                        no     yes    no   yes  yes   yes

___________________________________________
Table 3.3: The ConstraintsVertex Table

All the vertices that bind one common constraint provide a face of the
feasible region: 

One Common Constraint Vertices V(i)

X1 + X2 + X3 = 10 1, 2, 3, 4

3X1 + X3 = 24 1, 2, 5

X1 = 0 3, 4, 6 

X2 = 0 1, 3, 5, 6

X3 = 0 2, 4, 5, 6

___________________________________________
Table 3.4: Identification of Faces

Vertices that bind two common constraints provide an edge of the fea-
sible region:

Two Common Constraints Vertices V(i) 

X1 + X2 + X3 ≤ 10, 3X1 + X3 ≤ 24 1, 2

X1 + X2 + X3 ≤ 10, X1 ≥ 0 3, 4

X1 + X2 + X3 ≤ 10, X2 ≥ 0 1, 3



X1 + X2 + X3 ≤ 10, X3 ≥ 0 2, 3

3X1 + X3 ≤ 24, X1 ≥ 0 no edge

3X1 + X3 ≤ 24, X2 ≥ 0 1, 5

3X1 + X3 ≤ 24, X3 ≥ 0 2, 5

X1 ≥ 0, X2 ≥ 0 3, 6

X1 ≥ 0, X3 ≥ 0 4, 6

X2 ≥ 0, X3 ≥ 0 5, 6 

____________________________________
Table 3.4: Identification of Edges

4.  Parametric Representation and the Solution Strategy
Unlike linear programs, the optimal solution to a nonlinear prob-

lem P need not always be at a vertex of the feasible region.  Let us
associate a parametric variable λi with each vertex Vi of the bounded

feasible region for all i = 1, 2,....., m, where m is the number of ver-
tices of the feasible region.  The parametric representation of the deci-
sion variables: 

defines any point of  the bounded feasible region.  Substituting X =  in
the objective function, f(X), the parametric representation of problem
P  is:
Problem P: Max f(λ)
subject to:
λi ≥ 0,

∀ i =1, 2, ...., m. SScientific Journal of 
Administrative 
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In the proposed solution algorithm, we need to find critical points.
Notice that we distinguish between stationary points and critical
points. A critical point of a continuous function is any point where the
first partial derivatives are zero or undefined, while stationary pointis
generally used to mean a KKT point.  In an unconstrained problem, a
stationary point refers to the point where the gradient of the objective
function is zero. Therefore, the set of stationary points is a subset of the
critical points set for a continuous function.

The following provides an overview of the solution strategy:

1. Find the interior critical points by using the gradient of the
objective function, and then select those that are feasible by checking
the constraints.

2. Find vertices of the feasible region.   Arsham (1997) provides
a simple and direct algebraic methodology for solving a linear system
of inequalities by finding vertices of the feasible region without using
slack/surplus variables. 

3. Compute all other critical points first by constructing the para-
metric representation of the objective function over the open domains
of the boundaries of the feasible region, and then by using its gradient,
or by using directly the chainrule for the construction of the paramer-
ic gradient.

4. Evaluate the objective function at critical points and vertices. 

5. Select the global solution.

Since we employed a convex parametric transformation, therefore,
if Problem P has a global optimal solution, then f(λ) has a global opti-
mal solution.The following steps summarize the implementation of
the proposed solution algorithm:

Step 1. Evaluate f(λ) at its stationary points within the interior
of the feasible region.

Step 2. Evaluate f(λ) at its stationary points within the interior



of the faces and edges of the feasible region identified in the con-
straint-vertex table..

Step 3. Evaluate f(λ) at the vertices of  the feasible region.

Step 4. Select the global optimal solution(s).

Notice that it is easier to evaluate simply f(λ) at all stationary points
and at the vertices and to select the largest or the smallest value,
depending on whether the problem is of maximization or minimization
type.  Such an approach is much simpler than employing the needed
the second order derivatives of f (λ) (or its Hessian) in deciding
whether a given stationary point is a maximum or a minimum point.

Since the gradient is defined over an open set, we eliminate one of
the appropriate λi’s by utilizing Σλi = 1 in making the domain an open

set. Therefore, we solve unconstrained problems over some relevant
open sub-domains of the feasible region.  First, we find the critical
points on the interior of the feasible region. An interior point of the
feasible region is a point that satisfies all of the constraints, but the
constraints are nonbinding at that point. Next, we find the critical
points on the boundaries of the feasible region.  Finally, evaluation of
the objective function at critical points and vertices of the feasible
region provides the global optimal solution. The removal of constraints
in the proposed algorithm reduces the constrained optimization prob-
lem to some unconstrained optimization problems, which can be easi-
ly dealt with using the gradient. 

5.  Applications to Business Administration 
Optimization is at the core of rational decision making in business.

Even when the decision-maker has more than one goal, or when there
is significant uncertainty in the system, optimization provides a ration-
al framework for efficient decisions. The Markowitz mean-variance
formulation is a classic example. This section illustrates the solution
algorithm and its applications to finance, economics, marketing, and
production in the context of numerical examples already solved by
other methods.
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Financial Example:
Although there are a variety of portfolio selection models, the

widely used method is its formulation as a quadratic optimization
problem.  

The following portfolio selection is from Haugen (1997) that is
solved by Karush-KuhnTucker conditions, which assumes that the
objective function is convex.  The information on the expected return
vector (R) and covariance matrix (Cov.):

0.05 0.20 0.15 0.17
R = 0.10 Cov = 0.15 0.21 0.09

0.15 0.17 0.09 0.28

As in Haugen (1997), we will use the quadratic performance meas-
ure as a minimization of risk:

Min  f(X) = 0.2X1
2 + 0.21X2

2 + 0.28X3
2 + 0.3X1X2 + 0.34X1X3

+ 0.18X2X3
subject to:

0.05X1 + 0.1X2 + 0.15X3 = 0.1
X1 + X2 + X3 = 1
X1 , X2 , X3 ≥ 0

Clearly, the objective function and equality conditions indicate this
is a continuous optimization problem with a bounded feasible region.
We now follow the algorithmic steps outlined in Section 4. 

Step 1:For this three-dimensional decision-variable problem, the fea-
sible region is the line segment joining the following two vertices:



Step 2: Find the critical points on the line segment: The parametric
representation of the line segment AB is:

X1 = 0λ1 + 1/2λ2 =  1/2λ2
X2 = 1λ1 + 0λ2 = 1- λ2
X3 = 0λ1 + 1/2λ2 = 1/2λ2 ∀λ2 ∈ (0,1).

Using the chain-rule, the derivative of f(λ) with respect to λ2 is:

f ′(λ2) = Σ ∂f(X)/∂Xj . ∂Xj/∂λ2 =

(0.5X1 + 0.3X2 + 0.34X3)(1/2) + 

(0.42X2 + 0.3X1 + 0.18X3)(-1) + 
(0.56X3 + 0.34X1 + 0.18X2)(1/2) = 
0.75λ2 – 0.36,   

The derivative vanishes at λ2 = 12/25. This gives an interior criti-

cal point C1 = (X1 = 1/2λ2 = 0.24, X2 =  1- λ2 = 0/52, X3 = 1/2λ2
= 0.24) with objective values of 0.1668    

Step 3: There is no edge for this problem.

Step 4:Now by comparing the numerical values of f(X) at vertices and
point C1, we conclude that the optimal solution is at point C1 = (0.24,

0/52, 0.24) with optimal value 0.1668 . 

By having the above information, one readily constructs the
numerical tight bounds for the objective function, that is, 

0.1668 ≤ 0.2X1
2 + 0.21X2

2 + 0.28X3
2 + 0.3X1X2 + 0.34X1X3 +

0.18X2X3 ≤ 0.215, over its feasible region.

Non-Convex Quadratic Optimization:
Now suppose the covariance 0.34 is negative, say -0.5. The prob-

lem is:SScientific Journal of 
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Min  f(X) = 0.2X1
2 + 0.21X2

2 + 0.28X3
2 + 0.3X1X2 - 0.5X1X3 +

0.18X2X3
subject to:

0.05X1 + 0.1X2 + 0.15X3 = 0.1
X1 + X2 + X3 = 1
X1 , X2 , X3 ≥ 0

Notice that the KKT condition-set does not provide any solution to
this non-convex problem. However, with the new approach, we will
follow the same steps as before.  

Using the chain-rule, the derivative of f(λ) with respect to λ2 is:

f ′(λ2) = ∂f(X)/∂Xj . ∂Xj/∂λ2 =

(0.5X1 + 0.3X2 – 0.5X3)(1/2) + 

(0.42X2 + 0.3X1 + 0.18X3)(-1) + 

(0.56X3 - 0.5X1 + 0.18X2)(1/2) = 

0.045λ2 + 0.18,   0<λ2<1

The derivative does not vanish. Therefore there is no interior sta-
tionary point for this problem. 

Step 4:Comparing the numerical values of f(X) at two vertices:

we conclude that the optimal solution is at point B = (1/2, 0, 1/2)
with optimal value 0.01. 

By having the above information, one readily constructs the



numerical tight bounds for the objective function, that is, 

0.01 ≤ 0.2X1
2 + 0.21X2

2 + 0.28X3
2 + 0.3X1X2 - 0.5X1X3 +

0.18X2X3 ≤ 0.21, over its feasible region.

Economics Example:
The following Micro-Economics optimization with a logarithmic

utility objective function is from Kreps (1990, pages 778-782) which
is solved therein by applying the Karush-Kuhn-Tucker conditions. The
problem involves maximizing the utility due to consumption of two
products, wheat and corn. No more than $10 can be spent for the pur-
chase of these products and the total caloric content may exceed 1500.
The decision variables are:  X1 =  number of units of wheat, and X2 =

number of units of candy.

Max f(X) = 3log (X1) + 2log (2 + X2)

subject to: X1 + X2 ≤ 10

150X1 + 200X2 ≤ 1500

X1 ≥ 0, X2 ≥ 0.

In solving this problem, we follow the algorithmic steps outlined in
Section 4. 

Step 1:The graph of the feasible region provides the vertices, which
are A, B, C, and D, respectively:

X1 = 10 X1 = 9 X1 = 0 X1 = 0

X2 = 0              X2 = 1 X2 = 31/9 X2 = 0

The parametric representation of the interior points of the feasible
region is:

X1 = 10λ1 + 9λ2

X2 = λ2 + 31/4λ3, such that1 > λ1, λ2, λ3 , λ4 > 0, λ1 + λ2 + λ3 + λ4= 1SScientific Journal of 
Administrative 
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The parametric objective function 
(after the substitution λ4 = 1-λ1- λ2 - λ3) is:

f(λ) = 3log(10λ1 + 9λ2) + 2log(λ2 + 31/4 λ3 + 2)

Step 2: The gradient does not vanish anywhere, therefore, there is no
any interior stationary point.

Step 3:Representation of f(X) on  the edge joining the following two
vertices B and C:  

X1 = 9 X1 = 0

X2 = 1 X2 = 31/4

The parametric objective function (after substitution λ2 = 1 - λ1) is:

f(λ) = 3log(9λ1) + 2log(39/4 - 27/4λ1)

The derivative vanishes at λ1 = 13/15. Therefore λ1 = 13/15, λ2 =
2/15 which gives X1= 39/5, X2 = 19/10, with f(X) = 8.9.  On the other
remaining edges the derivatives do not vanish.

Step 4:Evaluation of objective function at the vertices of the feasible
region:

Therefore, the optimal solution occurs at X1= 39/5, and X2 = 19/10

with an optimal value of 8.9. 

Vertex (X1 , X2) f(X)

A (10, 0) 3log10

B (9, 1) 3log9

C (0, 31/9) 2log(31/4)

D (0, 0) undefined



By having the above information, one is able to provide only the
numerical upper bound for the objective function, that is, 

3log (X1) + 2log (2 + X2) ≤ 8.9, over its feasible region.

Marketing Example: 
The following Marketing nonlinear (quadratic) programming prob-

lem is from Markland and Sweigart (1987, pages 719-720) which is
solved therein by the Lagrangian multiplier method. The problem
involves maximizing the sales of a product subject to the total $1000
available for marketing that must be spent on newspaper and/or radio
commercials advertising campaign.  The decision variables are: X1 =

number of units of newspaper advertisements, and  X2 = number of

units of radio commercials.

Max 4300X1 - 300X1
2 + 2500X2 - 100X2

2

subject to: 300X1 + 200X2 = 1000

X1 ≥ 0, X2 ≥ 0

We now follow the algorithmic steps outlined in Section 4. 

Step 1:The vertices of the feasible region are:
X1 = 10/3 X1 = 0

X2 = 0X2 = 5

The parametric representation of the interior of the feasible region is:

X1 = 10/3λ1

X2 = 5λ2, such that 1 > λ1, λ2 > 0,  λ1 + λ2 < 1

After substituting for λ2 = 1 -  λ1, we have:
X1 = 10/3λ1

X2 = 5- 5λ1

Step 2:The parametric objective function is:
f(λ) = -17500/3λ1

2 + 20500/3λ1 - 10000
SScientific Journal of 
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The derivative of f(λ) vanishes at λ1 = 41/70. Therefore λ1 = 41/70,
λ2 = 29/70, and f(λ) = 12000. This gives X1 =  41/21, and X2 = 29/14,

with f(X) = 12000. 

Step 3:Evaluation of objective function at the vertices of the feasible
region:

Step 4:Therefore, the optimal solution occurs at X1= 41/21, and X2 =

29/14 with an optimal value of 12000.  By having the above informa-
tion, one readily constructs the numerical tight bounds for the objec-
tive function, that is, 

2400≤ 4300X1 - 300X1
2 + 2500X2 - 100X2

2 ≤ 12000, over its

feasible region.

Production and Operation Management Example:
Many practical nonlinear mathematical programming leads to opti-

mizing a quotient of two functions subject to a set of linear constraints.
The areas of applications include, cutting stock problem to minimize
the ratio of wastage to useful output, ship scheduling to maximize the
ratio of profit per journey to total journey, and the Markov chain deci-
sions of finding minimum cost policies for the management of stochas-
tic systems. The following fractionaloptimization problemis from
Chadha(1999) thatis solved by a specialized solution algorithmthere-
in.

Max f(X) = (2X1 + 6X2) / (X1 + X2 + 1)

subject to:
X1 + X2 ≤ 4, 3X1 + X2 ≥ 6, X1 - X2 = 0, X1 , X2 ≥ 0

Vertex (X1 , X2) f(X)

A (10/3, 0) 4000

B (0, 5) 2400



Clearly, the non-negativity conditions indicate that the denomina-
tor of the objective function does not vanish within the feasible region;
therefore, this is a continuous optimization problem with bounded fea-
sible region.We nowfollow the algorithmic steps outlined in Section 4. 

Step 1: Since the feasible region is only a line segment, there are no
interior critical points.

Step 2: Notice that, for this two-dimensional problem, the feasible
region is the line segment joining the following two vertices:

Step 3: Finding the critical points on the line segment:  The paramet-
ric representation of the line segment AB is:

X1 = 3/2λ1 + 2λ2 = 3/2λ1 + 2(1-λ1) = 2 - λ1/2 

X2 = 3/2λ1 +

2λ2 = 3/2λ1 +
2(1 - λ1) = 2 -

λ1/2
for all 0<λ1<1.

Therefore, the parametric representation of the problem over AB
is:

Max f (λ1)  = (16 - 4λ1)/(5 - λ1), over the domain 0< λ1 <1.

The derivative of f(λ1) is:

f ‘ (λ1)  = -4/(5 - λ1)2

which is always negative over its domain.  Therefore, there is no
critical point for this problem.
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Vertex (X1 , X2) f(X)

A (3/2, 3/2) 3

B (2, 2) 16/5
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Step 4:Now by evaluating f(X) at vertices, we conclude that the opti-
mal solution is at (2, 2) with an optimal value of 16/5. This solution is
superiortothe solution (X1, X2) = (3/2, 3/2), with objective value of 3,
obtained in the above reference. 

By having the above information, one readily constructs the
numerical tight bounds for the objective function, that is, 

3 ≤ (2X1 + 6X2) / (X1 + X2 + 1) ≤ 16/5, over its feasi-

ble region.

6. Conclusi.ons
A critical evaluation of the current literature on even local opti-

mization solution algorithms with business applications reveals that
their approaches are frequently too complex, computationally labori-
ous, and difficult to implement. Finding the global solution for gener-
al optimization problems is not an easy task. This paper proposes an
enumeration procedure to obtain the global solution to linearly con-
strained optimization problems with almost differentiable objective
functions. The key to the general solution algorithm is the removal of
constraints through parametric representation of the problem using the
convex combination of the vertices of its feasible region.  The vertices
are obtained by a simple and direct algebraic method.  The globally
optimal solution is then found by computing stationary points and
evaluating the objective function at these points as well as at the ver-
tices.  The algorithm and its applications are presented in the context
of small numerical problems.

This paper presented a new solution algorithm for linearly con-
strained optimization problems. Other more complicated approaches
often yield solutions that are only locally optimal, although there may
be no clear signal that it is not a globally optimal solution. The simple
algorithm presented in this paper guarantees that the solution is glob-
ally optimal. The key to the general solution algorithm is the removal
of constraints through parametric representation of the problem using
the vertices of its feasible region.  The vertices can be obtained by a



simple and direct algebraic method.  The globally optimal solution is
then found by computing stationary points and evaluating the objective
function at these points, as well as at the vertices.  The algorithm and
its applications were presented in the context of business decision
models.  This enables us to solve a large class of problems including

linear, fractional, quadratic, convex, and non-convex programs. 

Linear dependence among the linear constraints is commonplace in
practical problems.  Linear dependence among linear constraints that
are binding at a point is commonly known as degeneracy, and such a
point is called a degenerate point. The resolution of degeneracy at a
vertex is essentially a combinatorial problem whose solution may
require a significant amount of computation; see e.g. Gill et al (1989),
or Yamada et al (1994).  Since our approach is an explicit enumeration
technique, as opposed to a path-following method, it is free from com-
putational problems that may be caused by degeneracy.

The new algorithm compares favorably for small size problems
with other methods, in that it has simplicity, potential for wide adapta-
tion, and deals with all cases. The overhead involved is generating the
vertices of the feasible region, finding the critical points, and perform-
ing some functional evaluations. 

The algorithm is applicable to a wide variety of problems in
finance, economics, marketing, production management and other
business disciplines. Because of its simplicity, it has exceptional merit
as a pedagogical tool in business programs, and it can be easily under-
stood and applied by business managers without requiring advanced
training in optimization techniques.

While other derivative-based algorithms, such as Lagrangian mul-
tiplier and Karush-Kuhn-Tucker (KKT) conditions, give locally opti-
mal solutions, our solution algorithm provides the globally optimal
solution in all cases. Notice that both the Lagrangian and KKT meth-
ods remove the constraints by using a linear combination of the con-
straints. Our solution algorithm uses the linear convex combination ofSScientific Journal of 
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the vertices of the feasible region to remove the constraints.

Notice also that, the computational comparison of the proposed
algorithm with other methods is not likely to be very meaningful, since
other general methods do not provide exact globally optimal solutions
in all cases.  This does not imply that all distinctions among specific
classes of the problem should be ignored, since incorporating special
characteristics of a problem to modify a general solution algorithm is
always likely to result in increased computational efficiency. This is an
area for future research. The proposed algorithm has the following fea-
tures:

- It guarantees locating a global solution.

- It has simplicity in that it is easy to understand, and uses only
numerical functional evaluation and the first order derivatives (gradi-
ent).

It can thus serve as a useful introduction to nonlinear optimization
before covering advanced techniques.

Further areas of research include the extension of the solution algo-
rithm to the special cases, such as unbounded feasible region, sensitiv-
ity analysis, Arsham (1998), and development of a computerized ver-
sion with some possible refinements for large-scale problem imple-
mentation.  At this point, the reader is asked to solve his/her own prob-
lems by applying this algorithm as a final measure of evaluation.  
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