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Abstract-We discuss some known and some new results on the score function (SF) approach for 
simulation analysis. We show that while simulating a single sample path from the underlying system or 
from an associated system and applying the Radon-Nikodym measure one can: estimate the performance 
sensikGries (gradient, Hessian etc.) of the underlying system with respect to some parameter (vector of 
parameters); extrapolate the performance measure for different values of the parameters; evaluate the 
performance measures of queuing models working in heavy traffic by simulating an associated (auxilliary) 
queuing model working in light (lighter) traffic; evaluate the performance measures of stochastic models 
while simulating random vectors (say, by the inverse transform method) from an auxiliary probability 
density function rather than from the original one (say by the acceptance-rejection method). Applications 
of the SF approach to a broad variety of stochastic models are given. 

1. INTRODUCTION 

Let 

W = ~,bYYN = s UYU-(V, Y) dy (1) 

be the steady-state performance measure of a stochastic system, wherefis a pdf (probability density 
function), Y is an RV (random vector) distributed f(v, y) and VEV is a vector of parameters. 

We shall deal here with both DEDS (discrete events dynamic systems) and DESS (discrete events 
static systems). The main difference between DEDS and DESS is that while the first evolve over 
time the second do not [I]. Note that DESS assumes using a fixed number of RVs Y, whereas DEDS 
may require a random number of Ys (e.g. regenerative simulation). Examples of DEDS are queuing 
networks, and examples of DESS are reliability systems and stochastic networks. For queuing 
networks, L(Y) might be the time until a certain level is crossed, the mean sojourn time, utilization 
and throughput, and f(v, y) might be the multidimensional pdf of the interarrival times, service 
times or routing probabilities. For a PERT system, L(Y) might be the shortest path and f(v, y) 
the multidimensional pdf of the duration of the activities. 

It is further assumed that l(v) is not available analytically (because of the complexity of the 
system) and we have to resort to Monte Carlo simulation. 

In this paper we survey the main results from Rubinstein’s work [l-6] on the scorefunction (SF) 
approach and present some new results on this subject. More definitely we show that while 
simulating a single sample path from the underlying system or from an associated system and then 
using the Radon-Nikodym measure [7] we can 

(i) estimate simultaneously the performance 1(v) and all its sensitivities (gradient 
V&v), Hessian V’,(v) etc.); 
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(ii) 
(iii) 

(iv) 
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extrapolate the performance Z(v) for different values v + Av’, s = 1,2, . . . ; 
evaluate the performance 1 for heavy trafic queuing models by simulating 
associated queuing models working in right (fighter) traffic; 
evaluate the performance 1 while generating a stream of RVs from an auxiliary 
pdf, say g(y), from which RVs can be easily generated, rather than from the 
original pdf/(y) from which RV generation is time-consuming. 

It is important to point out that issues (i) and (ii) have been extensively treated by Ho and his 
collaborators using perturbation analysis (PA). The PA approach was proposed by Ho, Eyler and 
Chien in 1979 [8] (see also Refs [9-141 for further references on PA) and the SF approach was 
proposed by Rubinstein [2] (see also Refs [I, 3-6, 15, 171). Glynn [18-201 and Reiman and Weiss 
[21] independently discovered the second approach. Glynn [18-201 made substantial contributions 
to sensitivity analysis. Rief et al. [22,23] applied similar ideas for deriving sensitivities in radiation 
transport problems. 

We assume further that the batch means method [e.g. 241 is applied for performance evaluation 
of DEDS. Application of our approach to the method of independent replications, the regenerative 
method etc. is quite similar [4, 16, 211. 

Section 2 deals with sensitivity analysis (estimation of gradient, Hessian etc.) of both DESS and 
DEDS. Section 3 is devoted to performance extrapolation of Z(v); i.e. to evaluation of Z(v) for 
different values of v + Av’, s = 1,2, . . . . Section 4 shows how, using our approach, one can evaluate 
the performance of a queuing model working in heavy trajk while simulating an associated 
(auxiliary) queuing model working in light (lighter) trafic. In Section 5, similar ideas will be used 
for performance evaluation of both DESS or DEDS, while generating a stream of RVs from an 
auxiliary pdf (by using, say, the inverse transform method) rather than generating from the original 
pdf f (y) (by using, say, the time-consuming acceptance-rejection method). In Section 6 we extend 
our results for stochastic models where both L and f depend on the vector of parameters v. In 
Section 7, we introduce a nonlinear control random variable procedure for variance reduction. 
Finally, in Sections 8 and 9 concluding remarks and some ideas for future research are given, 
respectively. 

2. SENSITIVITY ANALYSIS? 

2.1. Sensitivity of DESS 

Consider the model (I), assuming that the underlying cdf F(v, y) belongs to a family of 
absolutely continuous cdfs. The treatment where the F(v, y) belongs to a family of discrete or 
mixture distributions is similar. The partial derivative of l(v) [see equation (l)] with respect to uj, 
j=l,...,n, is 

(3(v) a 
- = av 

auj I s 
L(y)f(v, Y) dy 

= L(Y) 
s 

af (v, Y) dy 
avj 

= L(Y) 
s 

alnf(V, Y) 
av, f (v, Y) dy 

I 

= E L(Y) 
a lnf(v, Y) 

avj ; 1 
provided that the operators differentiation and expectation (integration) are interchangeable, 
af(v, y)/au, exists, and f (v, y) is positive VveV, where V is an open set. 

The gradient of f(v) can be written as 

V/(v) = E[L(Y)V Inf(v, Y)]. (3) 

tA large portion of the material of this section is based on Refs [l, 3,4]. 
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Proceeding with equation (2), we obtain 

a*/(v) a 
-=z L(Y) s a lnf(v, Y) 

avjavk k 

av, f(v, Y> dy 
I 

a2 lnfk y) + 8 lnf(v, y) a lnf(v9 y) 
avjavk f3vj au, 1 

f(v 

9 

y) dy 

a* lnf(v, Y) + a lnf(v, Y) a lnf(v, Y) 

auj au, avj - au, . (4) 

The Hessian of l(v) is therefore 

V21(v) = E[L(Y)H(v, Y)], 

H(v, Y) = V* lnf(v, Y) + V lnf(v, Y)V’ I.nS(v, Y). 

(5) 

(6) 

Here ’ denotes the transpose operator. Proceeding further with equations (4) and (5), one can 
readily obtain partial and mixed derivatives of higher order. 

Let 4 denote a linear operator, say differentiation or integration; then formulas (2H5) can be 
generalized as follows: 

4 (l(v)) = 4 s L(~>f(v, Y) dy = s UY)W-(V, r));$$$ dy = 4-m 5 (7) 
3 

L(Y) 4~~y~ 
9 1 

provided again that the operators r$ and expectation (integration) are interchangeable. Note that 
the indexf(v) in the last term of formula (7) means that the expectation is taken with respect to 
f(v, y). It follows from formula (7) that if I$ = V we obtain formula (3), and if C#J = V* we obtain 
formula (5). Note that formula (7) can be further generalized as 

where Z is distributed g(z), g(z) corresponds to a probability measure dominating the family of 
pdfs {j-(v, Y), vev) in the absolute continuous sense, and index g in the last term of formula (8) 
indicates that the expectation is taken with respect to g. It is clear that in the particular case where 
g(z) =f(v, z), we obtain formula (7). In this section, if not stated otherwise, we assume g(z) =f(v, z) 
and C$ is a differentiation operator. 

Note that formulas (7) and (8) and therefore equations (2)-(5) assume that the operators 
integration and 4 are interchangeable. For a rigorous treatment of these issues see Refs 
[l, 21,25,26]. 

An unbiased estimate of +(Z(v)) is 

(9) 

where Yi is distributedf(v, y). Denote f(v) = V’/(v); then in the particular case C#J = V”, C#J = V and 
4 = V2, we obtain 

W,(v) = IN(V) = ; .t L(Yi(V)), (10) 
I-1 

T.IN(v) = f ,t L(Y,)V Inf(v, Yi) 
I-I 

(11) 

and 

m,(v) = f ,i L(Y,)H(v, Yi) (12) 
r-l 

respectively, where H(v, Y) is given in formula (6). 
Since the sensitivity sir/,(v), r = 1,2, . . . , contain V lnS(v, y) (called in statistics the efficient score 

[e.g. 27, p. 107]), we shall call our method the score function (SF) method. 



196 H. ARSHAM et al. 

The advantage of the SF method is that: 

(i) All the unknown quantities Z(v), V,(v), V?(v) and higher order partial and mixed 
derivatives can be estimated simultaneously from a single simulation. 

(ii) In order to find the sensitivities 4(1(v)) or I(v) we do not need to dzferentiate the 
sample performance function L[y(v)J, which in many cases might not be a 
smooth (differentiable) function. What we only need to know is the sensitivities 
of lnf(v, y); i.e. +(lnf(v, y)) and L(Y,). 

In the following examples we shall find the efficient scores and the associated sensitivities for 
several standard distributions. 

Example la 

LetY,,k=l,..., m, be independent RVs each distributed G (&, Pk), where G denotes a gamma 
distribution; i.e. 

yk > 0, Ak > O, fik > O, 

f& by y) = fi fcAk, ak, Yk). 
k=l 

Assume that we are interested in the sensitivity with respect to k. only. We have 

where 

V lnf(h B, Y) = W’ - y, (13) 

A-’ = (A.;‘, . . . 9 L’)‘, B = (81, . . . 3 am>‘, Y = (Yl, . . . ,Y,)‘, AS = WI,. . f , W,)’ 

and 

where 

fH(1,y)},k=(P,~,‘-y,)(8k~,‘-yk)-6jkBk1,2, _hk = 1,. . . ,m, (14) 

Finally, 

j=k 

j #k. 

and 

Vl(1) = E[L(Y)(fW’ -Y)] 

V21(1) = E[L(Y)H(I, Y)]. 

Example 2a 

Let Y - N(p, Z); i.e. 

1 
f(py y) = (zn )m/2 1 z 1 l/2 exp{-~[(Y-C1)‘C~‘(y-~)l}, 

where Z is a positive defined matrix. We have 

(15) 

(16) 

VI(p) = E[L(Y)C -‘(Y - p)] 

V*/(p) = E{L(Y)[C-‘(Y - p)(Y - p)‘Z-’ - C-‘I>, 

respectively. 
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Example 3a 

Let Y,,k=l,..., m, be independent RVs each distributed Bernoulli with parameter p&; i.e. 

P(P,, J4 = PNl - PJ -pk, yk = 0, 1 and p(P, Y) = kn, p(P,, Yd 

We have 

[v~(P)lk =E L(y)p2;;l;kj] 

and 

where 

V2KP) = wm~(P, WI, 

iH(P, Y>>jt = 
Y,-pj Yk-Pk 

P,(l -f’j)Pk(l -P&j 

_6_ yk-2Ptik+P: 

” P:(l -P&j2 ’ 

j,k=l,..., m. 

Example 4a: exponential family 

Suppose that Y has the pdf 

Then 

f(v, Y> = expMvMy) + 0) + 4~11. 

and 

V Inf(v, y) = Va(v)b(y) + Vc(v) 

H(v, y) = V*a(v)b(y) + V*c(v) + [Va(v)b(y) + Vc(v)]*. 

As examples of DESS consider a reliability system and a stochastic PERT network. 
(i, Reliability system. The mean lifetime of a coherent reliability system can be written [3, Sect. 

1.11 as 

1(v) = E max min Yi , [ 1 (17) ,=I.. . ..p ieL, 

where L, is the jth complete path from a source to a sink in the system, Yi, i = 1, . . . , m, are the 
durations (lifetimes) of the components with cdfs F(v, y) depending on a parameter (vector) vi, 
i=l,..., m, and p is the number of complete paths in the system. 

(ii) Stochastic network. The mean shortest path (the minimal project duration) in a stochastic 
PERT network can be written [3, Section 1. l] as 

where p, L,, Y, and vi have meanings similar to those in equation (17). 
Clearly 

Qv) = ; 5 ( max min Y, 
S-I ,=I. . ..p iEL, 

> 

and 

TN(v)=; i y,s s- I ( min 
c ,> j =,,,,,, p isL  

I 

(18) 

are unbiased estimates for equations (17) and (18), respectively. 
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We shall now derive the sensitivities V/(v), V?(v) and their corresponding estimates vldv) and 
p’ldv) for the reliability mode1 (17). We have from equations (17), (3) and (5), 

VI(v) = E 
K 

j=Iffx,p 

and 

V*,(v) = E max min Y, H(v, Y) , 
j=l.....p iaL, 

> 1 

(19) 

(20) 

where H(v, Y) is given in equation (6). 
Consider Example la; i.e. assume that Y, are independent, each distributed G(I,, Pk), 

k=l,..., m. Substituting equations (13) and (14) into equations (19) and (20), respectively, we 
obtain 

1 
and 

V2/(1) = E max min YiH(3L, Y) . 
j=l,...,p ieL, 

I 

The estimates VZ(5) and V*/(k) of VI@.) and V*Z(1) are 

or&) = ; $ C max min Y,(@- - Y,) 
s--l j= I.. ..,p IEL, 1 

and 

(21) 

respectively. 

j,k=l,..., m, (22) 

2.2. Sensitivity of DEDS 

Let {L,: t > 0} be the stochastic process under consideration. Assume that it is strictly stationary 
with E(L:) < co, and depending on whether (L,, t > 0) is a continuous-time or discrete-time 
process, the steady-state mean E(L,) can be estimated by the time average as 

s 

r 
Tr = T-’ L, dt 

0 

and 

i,= T-’ i L,, 
1=I 

respectively. 
If we think of L, as the queue length at time t, then 1, above would be a natural estimator of 

the steady-state mean queue length E(L,); if we think of L, as the waiting time of the t th customer, 
then & in the alternative equation above would be an estimator of the steady-state mean 
waiting time. We also call L, the steady-state sample performance at time t. For a typical DEDS, 
we write 

L,=L,(Y,)=L,{y,,Y,_,,...,yo,y-,,y-2,...}, 

where Y,=(Y,,Y,_ ,,..., Y,,Y_,,Y_, ,... >,Y,,Y,_ ,,..., is a sequence of i.i.d. RVs (input 
sequence) driving the output process L,. 
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Example 5: GIlGIl queue 

Let I be the mean sojourn time of a customer in the GI/G/I queue. Denote by X, the steady-state 
waiting time of the tth customer in the queue. It is well-known [28] that 

x (+I = max{O, X, - Y,, + YZ,}, 

where Y,, and Y,, are the interarrival and the service times of the rth customer, respectively. In 
this case one can estimate 1 by 

The mean steady-state performance can be written as 

l(v) = EL, = EL,@,). 

As we mentioned in the Introduction we shall apply here the SF approach to the batch means 
method. Its application to independent replication and the regenerative method can be found in 
Refs [4,6,21]. According to the batch means method we run the system until it reaches the 
steady-state, then we collect A4 = NT observations (NT is, say, the number of customers 
commencing service at a particular service station), where N is the number of batches and T is the 
size of each batch, and estimate the steady-state performance 

as 

0) = E(L,) = J%%(Y,)I (23) 

where 

Yli = (Yrir y,,P I)i, . . . 2 yOi3 y-li9 y-2jl . . .I. 

Clearly i,,&) is an unbiased estimator of I(v). Note that the batch size T is typically chosen 
[29] such that the correlation between L, and L,, r is negligible. 

To derive the sensitivity estimators with the SF approach for the batch means we argue as 
follows: 

(a) Define first 

L&C v) = EL, = EMY,WNl = s My,) f,W, v, y,)dy,, (25) 

where 

fr(“, v, Y,) = i f(v, Yj), (26) 
/=l-M+I 

Y,(M)=(Y,,Y,-,,...,Y,- ,,,+,) and L,@,(M)) is the truncated version of 
L,(y,), and is called the M-dependent process. Note also that since Y,(M) 
presents a truncated version of Y, = (Y,, Y,_ , , . . .) in general l(M, v) # I(v) (for 
more details see below). We shall call L, the truncated sample performance. 

As an estimator of l(M, v) consider 

Clearly 

i.e. lN,r(M, v) is a biased estimator of Z(v). If, however, M is large enough, say, 
M is the proper batch size, i.e. M = T, then the truncation effect of f,(M, v. y,) 
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on the bias of _f,,,(M, v) is negligible. We shall bear in mind further that M = T. 
Note that &(M, v) is an auxiliary estimator, it is introduced for clarification 
purposes only and it is typically not available from simulation. 

(b) Apply the linear operator 4 to JM, v), i.e. [see formula (7)] write 

= ~,(y,)4[fr(M,v,51,)1dy, s 
= E/C,, Lv,wK (27) 

provided interchangeability between the operator 4 and the expectation is 
available. Here f(v) indicates that the expectation is taken with respect to 

f,(M, v, Y,) and _ 

As an unbiased estimator of $[i(M, v)] consider 

where 

and 

(28) 

(29b) 

Clearly, 4[L,,,r] is a biased estimator of 4[l(v)] for the same reason that L,, is 
a biased estimator of l(v). 

(c) Since the sample performance L,(y,) is available from simulation we can use 
instead of 4[&(M, v)] the following estimator of 4[1(v)]: 

4[1N,T(M 91 = A-) $ i L(Y,JV,,W, v, Y,) = ;f i f L~,!W)> (30) 
r-l 1-l 8-I 1-l 

where V,,(M) = V,,(M, v, y,) is given by equation (29b). The estimator 
4 [f&M, v)] will be used as our basic estimator for the sensitivities 4[l(v)]. Note 
that since E(L,,) = I(v) and E(&,,) =JM, v) # I(v), the estimator 4[7;,,,] is typi- 
cally less biased than the estimator +[&I. 

In the particular case where 4 = V”, 4 = V and 4 = V2, we obtain 

and 

(31) 

(32) 
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where 

Sti(M) = 

Vf,i(“, v, Yti) ’ 

f,i(M, v, y,i) = j= ,c,+ , v logmy yJ7 (3W 

and similarly H,,(M). 
Note that the estimator !@oI&v) coincides with the conventional batch means 

estimator TN,,(v) [see equation (24)] and therefore is unbiased for l(v). The reason 
is that for 4 = V” we have V,i(M) = 1, M = 1,2,. . . . 

It follows from Theorem 5.3 of Karlin and Taylor [30, p. 4881 that if L, is 
a mixing process then L,S,(M) and L,H,(M) are stationary and ergodic 
processes. In the particular case where L,(y,) = &,(Y,(M)), i.e. L, is by itself an 
M-dependent process, we have that 4 [ 1 (AI, v)]] = 4 [l(v)] and EC#I [ 1,&M, v)] = 
E4[&,(M, v)] = l(v), i.e. 4[TN,,(M, v)], is an unbiased estimator of 4[l(v)] 
provided the interchangeability conditions hold. 

Note that when A4 = 1 the DEDS estimator d[TN,,(M, v)] reduces to the 
DESS estimator 4 [TN T(M, v)] = 4 [&r(v)] [ see equation (9)]. Thus, using the SF 
approach we can estimate simultaneously from a single simulation experiment 
both the performance measure 1(v) and its sensitivities d[/(v)]. 

Noting that E[S,,(M)] = 0 we can rewrite VL(M, v) as 

Vl(M, v) = Covar[L,, S,(M)] = E(L,S,(M)) - E(L,)ES,(M) 

and define 

q&M, v) = p&M, v) - is(M) 

as an alternative to the estimator vl,,,(M, v). Here 

(34) 

and S(M) = kf $ f S,i(M). 
r-l r-1 

Noting also that E(H,,) = 0, we can define in analogy to equation (34) 

q’!,,,(M, V) = i%,&&f, V) - %i (35) 

as an alternative to the estimator P21,,(M, v). For simplicity of notation (if no 
misinterpretation occurs), we suppress further M; otherwise we write T instead 
of M since we have assumed that M = T. 

Note that in order to compute Pi,,(v) and v21,&v) one has to compute L,i, Sti and H,i and then 
apply formulas (32) and (33) or (34) and (35), respectively. Note also that computation of S,i and 
H,i is generally less time-consuming than that of L,,. 

Now let us find S and H for the distributions in Examples la-4a. 

Example lb 

LetY,,k=l,..., m, be independent each distributed G(&, pk). We have 

S,= i Vlnf(l,fl,Y,)=l-‘Tfl- f: Y,, 
,=I /=I 

where 

3,=(a ,)...) a,)‘, p=(p I).. . , Pm)‘, I-’ = (a;‘, . .) a,‘)‘, 

LB = (M,, . . . 3 m m a B 1'3 yi = ( yil 9 . . 7 yvn)‘, 

(36) 

(37) 

(38) 

and 
j=k 

j #k. 
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Example Ic 

As an example of the above consider an M-station closed (open) queuing network. Assume that 
Yiw G(A,,bi), i = 1,. . . , m, and Yj and Ai denote the service time RV and the service rate, 
respectively, at station i. Let T,.,(v) be the sample utilization at stationj, j = 1, . . . , M. Then vlN,JX) 
and ~‘1,,,@) [see equations (32) and (34) and equations (33) and (35), respectively] present 
sensitivity estimates of the utilizations at station j with respect to the service rate vector 
I = (A,, . . . ) A,). 

Example 26 

Let Y N N(p, C), For N = 1 we have 

and 

respectively. 

Example 36 

Let Yk, k = 1, . . . , m, be independent RVs each distributed Bernoulli with parameter pli. We 
have 

7 

1 
1 Ytk - PkT 

k 
= ‘;& _Pkl , 

where Y = (Y,, . . . , Y,)', P = (p,, . . . , P,) and 

,$, (Ytk - 2PYtk) + P:.], j,k=l,..., m. 

Example 46: exponential family 

For f(v, y) given in Example 4a and N = 1 we have 

ST= Va(v) i b(Y,) + TVc(v) 
1=I 

and 

HT= V*a@)~ b(Y,) + V*c(v) + Va(v> i b(Y,) + Vc(v) ’ I[ Va(v) i b(y,) + Vc(v) 1 , !=I ,=I !=I 
respectively. 

Assuming that Var[L,(Y,)] < C < co, t >, 0 and taking into account equations (32) and (33a), it 
is readily seen [4-61 that typically for N = 1 we have 

Var v&(v) = 0 (T) (39) 

and 

Var v*Ir(v) = O(T). (40) 

It follows from equations (39) and (40) that the SF method will not be efficient for large T (e.g. 
queuing network in heavy traffic). In this case one can use efficient variance-reduction techniques 
[5,6,31] or the cross-spectral method [32]. 
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Let v now be a discrete rather than a continuous parameter. Assuming for simplicity v E V c R’, 
we can use the following finite-difference analog of V/(v) 

Vi(v) = & [f(v’) - I(v)], (41) 

where 

l(v) = EL, = E’&,(Y,)l; 

v’ = v + Av; 

E,=(Y,,Y,_ I,... ); . 

j=t,t-l,... 

(42) 

Note that the subscript f(v’) in formulas (42) means that the expectation is taken with respect 
toSI(v’,Y,)* Y,=(Y,,Y,-I,...). 

We shall call L,(y,) and L,(J’,) in formulas (23) and (42) the nominal and the perturbed sample 
performance functions, respectively. 

To estimate V/(v) we estimate first I(v) [see also formula (24)] and /(v’) as 

(43) 

h,w = &JV’> = $f ,$ $ Lri@ri)9 
r-1 I-I 

respectively. With &, and &, at our disposal we can define now the following two estimates for 
Vi(v): 

V@%J, = i Lti(Yti) 
i=n+l I=1 

(45) 

and 

(46) 

where it is assumed that for each i the components of the random vectors y,i and Eri in formula 
(45) are uncorrelated, while the corresponding components of Yli and EC, in formula (46) are 
correlated. More specifically, it is assumed that the random vectors Fi and y,i use CRN (common 
random numbers); i.e. 

{Y;, U,> = {F-‘(v + Av, U,), F-‘(v, U,)>. 

Here v, = {U,, j = t - T + 1,. . . , t), where Uj are iid random variables each distributed U(0, 1) 
and I;-’ is the inverse of the cdf F. We shall call Vi(v),, and V/(v),, the CMC (crude Monte Carlo) 
and CRN (common random numbers) estimates of 6,(v), respectively. 

It is shown in Refs [I I, 14,25,26] that generally the CRN estimate (46) is more accurate than 
its CMC counterpart (45) in the sense that 

Var V/(v),* < Var V/(v),, . 

Note that both estimates (45) and (46) require two simulations: one with v and another with v + Av. 
Clearly, when VE R”, each estimate requires at least (n + 1) simulations and therefore, for large n, 
calculation of V/(v),, and Vi(v),, can be very time-consuming. 
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Now we introduce an alternative to estimates (45) and (46) which in analogy to the SF estimate 
VI(v), assumes simulation of the nominal system only. We argue as follows: 

(a) Write l(M, v) [see formula (25)], with v’ instead of v, as 

where 

and 

f,W, V’TY,) 
~,W) = wt(M, Y,) = f,(M, v, y,) 

(47) 

f,C”, v’, Yt) = fi fCv’, yj). 
j=r-M+I 

It is important to note that the expectation in the second term of formula (47) 
is taken with respect to f(M, v’, y,), while the expectation in the last term of 
formula (47) is taken with-respect to f,(M, v, y,). It follows directly from formula 
(47) that changing the measure from &(M, VT y,) to fi(M, v, 1,) we can express 
it as expectation with respect to pdf f,(M, v, I,). Note that formula (47) presents 
a particular case of the Radon-Nikodym derivative [7]. 

As an unbiased estimator of formula (47) [see also formula (28)] consider the 
following auxiliary estimator: 

where, in analogy to formula (29), 

(48) 

(49) 

Clearly, l&M, v’) is a biased estimator of I(P) for the same reason that 

~E..,TM v)l [ see f ormula (28)] is a biased estimator of @Z(v). 
(b) Since the sample performance L, = L,(y,) is available from simulation, we can 

use instead of ?,,_,(M, v’) [see also formula (30)] the following estimator for I(v’): 

&&l4, v’) = l&4, v’) = ;f E c LziW&4). 
I-l r-1 

The estimator 1” N,T will be used in Section 3 as our basic estimator for performance 
extrapolation. Note that iN.r is typically less biased than IN-r for the same reason 
that 4[1,,,] is less biased than I$[&,,~]. Also, as for 4[i,,,,], we assume in formula 
(50) that A4 = T, where T is the proper batch size which is chosen such that the 
truncation effect of W,,(M) on the bias of r&.(M, v’) is negligible. 

(c) Finally, as an estimator of V/(v) [an alternative to estimators (45) and (46)] we 
define 

=--- 
Lv 1: ii$, ,$, LtiIWti(M) - ll. Csl) 
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Note that if L, is an M-dependent process then the estimator &,(it4, v’) is 
unbiased for Z(v’). Note again that in the particular case where M = 1 DEDS 
estimators reduce to DESS estimators. 
. As before we shall use further T instead of M and if no misinterpretation 
occurs we shall suppress M completely. 

Returning to the case where v is a continuous parameter, we readily obtain 

lim V0) = Em, & &,{L, (Y,) [ W, (Y, 1 - 11) = &,,L (Y, $3 M v, YJI = VW, VI (52) 
Av+O -4 

and 

lim V&9,, = ik ,i i L,,&(M) = %r(~, v), (53) 
Av-0 i--It--I 

provided that the operators lim and expectation in formula (52) are interchangeable, and f(v, y) 
is differentiable with respect to v. 

Thus, when Av-iO, the finite-difference estimate 6/(v) and the LR estimate Vet, converge to 
Vl(M, v) = E[VZ,,,,(M, v)] and to its estimate vI(M, v), respectively. 

Note that the estimates Vi(v),, and $Jv + Av) can be readily generalized as 

f,z(v + Av, Zti) - ;t;i(V, Z(i) 

vl(vhW = &ii f t L,i(Z,i) 5 

I-I r-1 g,i(Zti) 

.f,i@ + Av, Z,,) 

<lv+Av)=$$.$ i L,i(Z,il_ g,(z,) 

I-II-I rr rr 

(54) 

(55) 

where 

Note also that the pdf g(z) can be chosen with a view to variance reduction; i.e. to achieve 
Var V/(v),, < Var Vi(v),, and similarly in equation (55). Such a choice of g(z) [e.g. 331 is called 
importance sampling. In Sections 4 and 5 we shall present two alternative applications of the 
estimate c one for estimating performance of queuing networks in heavy traffic and the other to 
avoid using the acceptance-rejection method for perform evaluation. 

It is important to note that in contrast to Vi(v),, and V/(v),,, the LR estimate Vi(v),, [and 
VZ(v),,] is based on simulation of a single sample path L,(y,) [and L,@,)J only: it does not assume 
any transformation or reconstruction of it. 

3. THE “WHAT IF” PROBLEM (PERFORMANCE EXTRAPOLATION) 

This section is based on work by Rubinstein [4-61. It deals with the so-called “what if” problem 
which can be formulated as follows. What will be the value of the performance measure I(v) of 
the model (1) if the vector v is perturbed by Av”, s = 1, . . . , r? We show that using the SF approach 
one can estimate (extrapolate) simultaneously all the values I(v + AP), s = 1, . . . , r, from a single 
simulation. 

We shall consider the following two approaches: the Radon-Nikodym measure approach and 
the Taylor series expansion approach 

3.1. Radon-Nikodym Measure Approach 

This approach is based on the representation of Z(M, v’) and r&(A4, v’), as per formulas (47) and 
(50), respectively. 

Assuming without loss of generality that N = 1, we 
by v’, as 

I T 

can rewrite formula (50), with v replaced 

&(Y,)w,(M, v9 Y,), (56) 
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J-O-, vs Y,) 
w,(M, v, Y,) = w,‘X v, Y,) = f,(T, v, y,), (57) 

f,(T, vs, Y,) = n f (v’, Y,>. 
/=I-T+I 

Similarly to the sensitivity estimators v’lri.r(v) we have here: 

(ii 

(ii) 
(iii) 

For T < cc the estimators 1;(,)(Y’), s = 1, . . . , r, are typically biased since 

f,(v3 Y,) and f,(v’, Y,) P resent truncated versions of h(v, y,) and fi(v”, y,), 
respectively. The bias of 1;(v) increases as the batch size T decreases. 
For fixed T and Av” the bias of [;(“, increases with the traffic intensity. 
For fixed k and Av” the correlation between L, W, and L, + k W, +k is typically less 
than the correlation between L, and Lr+k, i.e. 

P&W,, L,+kw,+L) < P(L,, W,). 

This actually means that the batch size in the estimator I;,,(V) can be chosen 
smaller than in the CMC estimator 

~,,r(K v) = &,(v) = fi, JXY,). 
,--I 

Or, in other words, by putting more weights on L, (multiplying L, by IV,) one 
can reduce the batch size. 

It follows from equations (56) and (57) that in order to estimate the performance i(r’) for 
different values v” = v + Av’, s = 1, . . . , r, we only have to perform some simple calculations with 
L, and W,. Note that the extra computation of W, is usually small relative to L,. Note also that 
all the estimates l;(,,(V), s = 1, . . . , r, are computed simultaneously from a single simulation of the 
nominal system and no transformation of the nominal sample path is needed: it is taken in its 
original form. It is crucial to understand that the goal of the Radon-Nikodym measure used in 
equation (56) is to transform all perturbed sample paths L,(p,) associated with different values of 
vs=v+Av”,s=l,... , r, [see equation (44)] to the nominal one L,(J?,) with vs = v. We shall call 
[;(“, the LR (fikefihood ratio) estimate of Z(9). 

Example 6: GIlGIl queue 

Let L,(y,) be the sample sojourn time of the tth customer in the nominal GI/G/l queue. In order 
to estimate the mean sojourn time [(v + Av’) of a customer in the perturbed GI/G/l queue, we can 
apply directly equations (56) and (57), with L, = X, (see Example 5) and W, depending on the choice 
of the interarrival and service time pdfs. 

Consider now DESS. Since DESS can be considered as a particular case of DEDS, i.e. with 
T = 1, we have from equation (51), 

[;(“, = f,! 
[ 

L(Y,)f# 
1 
) s= l,...,r. 

I-I ) I 
(58) 

Example 7 

Consider a coherent reliability system with mean lifetime as in equation (17). We obtain from 
equation (58) 

[( 

consider now a stochastic PERT network as in equation (18). We have 

(59) 

K (60) 
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For another application of the LR estimate I;(v, assume that we want to optimize l(v) with respect 
to v. The conventional approach uses the CMC estimates (44) and (49, as estimates of I(P) and 
v’/(v), respectively [e.g. 341. Clearly, using the estimates ,;(y, and v,(v) [see formulas (56) (57), (32) 
and (33) respectively] instead of the conventional CMC ones we can obtain tremendous 
computational savings while optimizing 1(v). 

Estimating I(v + Av) with the LR estimates instead of CMC ones yields computational savings, 
but reduces precision; i.e. the variance of &(,,(v”) is usually larger than that of I;(,,(v’), its CMC 
counterpart. It is not difficult to show [4-61 that under rather mild conditions on L, and W,(T): 

(i) Var I;(,)(P) = Var L,W,(T)-+cc as T-+co; (61) 

(ii) Var &,,(v’) = O(Var W,(T)); (62) 

(iii) Var W, = E( W,)’ - E( W,)12 = 
[ ( i,J ’ ‘)1’-” 

1 + 0 max X%X! 

cc, = (Avi/u,J, i = 1,. . . , m. (63) 

It follows from formulas (62) and (63) that both Var W, and Var I;(y, increase exponentially in t. 
The situation is not so bad as one might think from the first glance. The reasons being: 

(9 

(ii) 

(iii) 

As we pointed out earlier for fixed k the correlation between L, W, and L, + k W, + k 
typically decreases as the variability of W, increases. This suggests obtaining 
shorter batches by putting more weight W, on L, (multiplying L, by W,). 
There are many efficient variance-reduction techniques (see Refs [l, 4-61 and 
Section 7 of this paper) to improve the accuracy of the estimator 5. 
Forsmallcciandai,i,j= 1,. .., m, namely, when Tmax, CQZQ < 0 (1) 4 0 (T), we 
readily obtain from formula (63) 

Var W,zO(Tyxniozi). (64) 

We shall discuss the last issue in more detail. Let 

ftv3 Y) = fi fCvi 9 Yi>, 
,=I 

where 

fCni7 Di3 Y) = 
/2.f exp( - ;1, y)y@l - ‘) 

r(bi> ’ 

i.e. Y, - G(v’), v, = (Ai, /Ii), i = 1, . . . m; G denotes a gamma distribution and consider the following 
two cases: 

(a) only a single parameter, say ii, out of 2m parameters of v = (u,, . . . , u,) is 
perturbed. 

(b) k out of 2m parameters of v = (u,, . . . , v,) are perturbed. 

Case (a). Proposition 2. For S(v, y) as per formulas (69, 

JW’:(T)I = EC W:) = 1 + 52 ;;; A3L > 
0 

Proof: We have from formulas (57) and (65). 

(66) 

(67) 

M.C” 12,2--F 
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Note that in formula (67) and further on we use for convenience W, instead of W, and 3, and AL 
instead of L, and AL,. The second moment of W, is 

Note also that formula (68) matches with formula (63). 
Taking into account that E( W,) = 1, we have 

Var W, = E( W+) - (EW,)’ = 
( 

1 + 12 :ii A3, 
> 

0 
- 1. 

Assuming further, without loss of generality, that k = 1, we obtain 

Var W,=(l+&y’-1. 

(68) 

Q.E.D. 

(69) 

Consider for simplicity the case where L, = 1, i.e. where L, W, = W,. Assume that 

A1’T < O(l), (70) 

from which it follows the Var W, < O(I). 
Table 1 presents E( W,)* as a function of T for different A1 and fl = 2. 
We shall restrict ourselves for concreteness to the case where Var W, < 25. It follows 

from formula (70) and Table 1 that our method works satisfactorily if the perturbations in A.1 
are: 

(i) 

(ii) 

(iii) 

(iv) 

Small (0 < AI < 0.0 1) and T is rather large (T x 104) 
example: AL = 0.001, T = 104, Var W, = 6.10. 
Rather small (0.01 < A1 d 0.04 and T is moderate (T x 103) 
example: AL = 0.04, T = lo’, Var W, = 18.31. 
Moderate: (0.04 < A1 < 0.1) and T is small (T z 102) 
example: AL = 0.1, T = lo*, Var W, = 4.26. 
Rather large (0.1 < A1 Q 0.5) and T is small (T x 10) 
example: AL = 0.5, T = 10, Var W, = 9.55. 

In all other cases this method does nor work because the resulting estimate of 1(1+ A.1) has high 
variance. Take, for example, A1 = 0.03 and T = 104. We have (see Table 1) 

Var W, = 5.46” - 1. 

Case (6). We shall consider only the case where k out of m parameters of the vector 
1= (n,, . . . , A,) are perturbed. Arguing as for formulas (67) and (69) we readily obtain 

1 (71) 

(72) 

For the particular case where Ai = 1, and Al, = AL, i = 1, . . . , k, we obtain 

AL* 

> 

krB 

h*f23LAX 
- 1. (73) 
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Table 1. E[W:] as a function of T for different AA and p= 2 

AL\.\ I IO' 102 IO' IO' IO' 

0.01’ l.OOil2 1.002 1.02 1.21 7.10'0 
0.02 1.0008 1.008 1.08 2.16 2.161w 
0.03 1.00168 1.017 1.183 5.46 5.46" 5.46'" 
0.04 1.003 1.03 1.34 19.31 19.31'0 19.31'M 
0.05 1.0046 1.046 1.57 93.72 93.72" 93.72'@' 
0.1 1.0166 I.181 5.26 5.26" 5.26'@= 5.26'Om 
0.2 1.058 1.756 1.75'0 1.75'W 1.75'na 1.75'O.ma 
0.5 1.2656 10.55 10.5'0 lO.S'M 10.5'rn' 10.5'o.* 
I 1.777 1.77'0 1.77'" l.77'W l.7'0.w l.77'm,w 

It follows from formulas (69) and (72) that E( W3) = (E( W’,,)2)k, where W,, = W, [see formula (67)]. 
Clearly, one can find Var W,, by replacing the column label r by kr with all other data remaining 
the same. 

Example 8 

Consider again the M-station queuing network of Example lc, with Yi - G(&, /Ii) and l(5) being 
the utilization at station j, j = 1, . . . , m. Assume that k of the m service rate parameters, say 

Al,..., ;ik, are perturbed: each by A&, i = 1,. . . , k. Substituting W, [see formula (71)] in formula 
(56) we can estimate I(1 + Al”) for many values of 1+ Av, s = 1, . . . , r, from a single simulation 
of the nominal queuing network. 

Asanumericalexample,letT=102,k=10,~=2,~i=3L=1,i=1,...m,andAAi=A1=0.04. 
In this case we have from Table 1 [see also formula (73)] that 

Var W,k = 
2- IO’ 

- 1 = 19.31 - 1 = 18.31. 

It follows from formulas (61) and (62) that 

Var &(,,(Vr) = O(Var W,k) = C Var W,. (75) 

If C z 1 then substituting equation (74) into equation (75), we conclude that the variance of the 
estimate &, is z 18 times greater than that of its CMC counterpart &, 

Note that if T were equal to IO3 instead of lo* or k equal to lo* instead of 10, this method would 
not work, since 

Var W, = 
( 

1 + 1 ~~04~204 
*.) 

2.104 

- 1 = (19.31)‘0- 1. 

Example 9 

Consider the reliability model (17) with f(v, y) given as in formulas (65). Substituting equation 
(71) in formula (59) and taking into account that for DESS, T = 1, we obtain 

(76) 

Let A, = 3, = 1, A& = A1 = 0.04, $ = 2 and k = 103. In this case our method works since (see 
Table 1) 

Var W,, = E(W,,)2 - 1 = 19.31 - I = 18.31. 

Note that to obtain Gcu for the stochastic network (18) we have to replace “max min” in equation 
(76) by “min X”, with all other data remaining the same. 

As we pointed out, to improve the accuracy of the estimators I;(“, [see formulas (56)-(58) we can 
use variance-reduction techniques (see Section 7 and Refs [l, 4-61). 

Until now we have assumed that the vector v, and therefore the nominal system, is chosen in 
advance. In most cases, however, the choice of the vector v is at our disposal. In this case it is 
natural to choose v as 

V=r-’ C f. 
s=l 

(77) 
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We shall now show (see Example 10 below) that in choosing v as per the above equation one 
can increase the efficiency of our approach. To see this, assume for simplicity that only one out 
of 2m parameters vi= lli, pi, i = 1, . . . , m, in formulas (65) is perturbed. 

Example IO 

Consider Table 1. Let T = 103, 1= 1, S = 3, Al’ = 0.04, AL2 = 0.08 and AL3 = 0.12. It follows 
that in this case the SF approach works onZy for the case A,I’ = 0.04, since (see Table 1) 
Var w,(AA,) = Var W,,,(O.O4) = 18.31, while Var W,,,(O.OS) 2 R and Var W,,,(O.12) 2 R, where R 
is a large number. If, however, we choose x = 1.08 [see equation (77)] instead of li = 1 then it readily 
follows from formulas (69) and (70) that our approach works for all three cases. 

Consider now the finite-difference LR estimate V/(v),,. The variance of V/(v),, [see formulas (49) 
and (SO)] is 

Var v~(Vh-43 = &Var T-’ i (L,W, - L,) 
1=I 1 

= & Var(l;,, - &cy,), 

provided N = 1. 
Since for large T, in general, Var(L,W,) % Var(L,) we readily obtain from equation (78) that 

1 - 
Var VQv),, = (r\v>2 O(Var I,,,). 

Taking into account equation (62), we have 

1 
Var V&Q,3 = (Av)2 - O(Var W,) = O(Var V,), (80) 

where V, = l/Av W,. Finally, it follows from formulas (39) and (53) that for small Av and N = 1 

Var V/(v),, z Var 2il,,,(v) = O(T). (81) 

3.2. Taylor Series Approach 

Assume that the sensitivities vf,,,(v), r = 1,2, . . . , [see formulas (32) and (33)] are available. 
We consider separately both DESS and DEDS. 

(i) DESS. For simplicity, let VEV c I?’ and consider the following Taylor series expansion: 

(Av)’ 
I(v + Av) = i(v) + AvVl(v) + - 2 W(v) + 0 (Av)~. (82) 

Replacing V’f(v), r = 0.1, . . . , where V’f(v) 3 l(v), by their corresponding point estimates vNI(v) [see 
formulas (11) and (12)] we can extrapolate I(v + Av) as follows: 

FN(v + Av) = &r(v) + Avv/,(v) + y s21N(v) + O,(AV)~. (83) 

Here e in &(v + Av) denotes the extrapolated value of Z(v + Av), and p in 0,(Av2) means that 
O,(Av’) = 0(Av2) in a probabilistic sense. It can be readily shown [l] that if 

(a) IAvl< 1 

and 

(b) 

where C, = Var vi,(v) < co, then 

r = 1,2,..., 

Var[&(v + Av)] < 5 
1 

N(l - Av)* 

and therefore 

lim pN(v + Av) = I(v + Av) in the mean square. 
N-Q2 

(84) 

(85) 

(86) 
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Thus, if the sensitivities vrlN(v), I = 1,2, . . . , are available, IAvl < 1, and equation (80) holds, 
then using the Taylor expansion (83) we can extrapolate simultaneously all the performance 
measures I(v + Av’) from a single simulation experiment. 

Example 11: reliability model 

Consider the reliability model (17). Assume that the components Yi have gamma lifetimes; i.e. 
Y, - G(li, pi). Then the extrapolated value of the mean lifetime of the system can be estimated as 
[see formulas (21) and (22)]: 

TN@ + AS) = ; i max min Y, [ 1 + 61’V lnj& Y) + $ Ah/H@, Y) AL] + O,(A5)‘, 
s_l j=l....,p IEL, 

where V lnf(h, Y) and H& Y) are given in formulas (13) and (14), respectively. 
(ii) DEDS. The treatment of DEDS is similar to that of DESS. In analogy to formula (83) we 

obtain (v E V c R’) 

(Av)* -* $,,,(v) + W = &,,&> + Av%,,(v) + 2 V I,,,(v) + O,(Av)? 

Since Var PIT(v) = 0 (T), r = 1,2, . . . , [see equations (39) and (40)], we obtain 

Var[&(v + Av)] = 0 3 
0 

, 

provided IAvl < 1, and condition (84) holds. 
Thus, for DEDS the Taylor method might work if the batch size T is small relative to N, 

)Avl < 1 and condition (84) holds. 
It would be interesting to compare the efficiencies of the Radon-Nikodym and Taylor series 

approaches: for example, to find conditions under which for given T, Av, (( Av ( < 1), and a given 
class of sample functions L,(y,), 

E[&T(v + Av) - f(v + Av)] ’ >< E[l;,,,(v + Av) - I(v + Av)]“. (89) 

4. SIMULATION OF QUEUING NETWORKS IN HEAVY TRAFFIC 

It is well-known [e.g. 241 that estimating performance measures of queuing networks in heavy 
and even moderate traffic is a rather difficult and time-consuming task. In this section we show 
that using the Radon-Nikodym theorem we can estimate the performance measure of the original 
heavy traffic queuing model by simulating an associated model working in lighter traffic. The 
approach used here is the same as for performance extrapolation and is based on the LR estimate 
(55). More specifically, let us write 1 [see equation (231 as 

L= E’L(Y,)l = s C&O hi!?? g,(y,) s&t) dx, = E, (90) 

where &,(yr) and &,(Z,) are the truncated sample performances of the original and the associated 
queues, respectively. Note that the expectation in the second term of equation (90) is taken with 
respect to the pdff while the expectation in the last term of equation (90) is taken with respect 
to the pdf g. Note also that changing the probability measure fromf(y) to g(y) we transform the 
original sample path to an alternative one which can be generated by using an associated queuing 
model working in lighter traffic. 

In analogy to equations (24) and (56) we have the following 

(i) the CMC estimator, 

1IN T 

alternative estimates: 

(91) 



212 

and 

(ii) the LR estimator, 

where 
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~=l-T+I 

(92) 

and similarly g,i. 

It follows from estimate (92) that to evaluate the performance measure I in heavy traffic, we can 
simulate an associated queuing system working in lighter traffic and then perform simple 
calculations with the sample performance L,(&) and the LR f,(Z,)/g,(Z,). Note that generally, 
the extra computation of fi (Z,)/g, (Z,) is small relative to the computation of L,(&). 

Let us now apply our approach to the GI/G/l queue. 

Example 12: GIjGjl queue 

In this case the CMC and the LR estimates are 

and 

(93) 

respectively. Here X, is given in Example 5 and 

x+1 = max{O, -3?, - Z,, + Z2,}, (94) 

where Z,, and Z2, are the interarrival and the service times of the tth customer in the associated 
GI/G/l having a joint pdf g(z), z = (zl, z,), and F is the batch size for the associated queue. 

Note that the associated GI/G/l queue works in lighter traffic than the original one if 

EW,) EW 
’ = E(Y,) > ’ = E(Z,)’ 

(95) 

Clearly, if formula (95) holds then [e.g. 241 the estimate c possesses the following properties: 

(A) It has a shorter transient period than its counterpart q. This means that using 
< one can start collecting the steady-state data earlier than with $. 

(B) It uses a smaller batch size than q, i.e. F < T. 

The main drawback of the estimate 4 (as with any of the LR estimates considered earlier) is that 

(C) Typically Var 5 > Var 5. 

For more details on this issue see Ref. [I 51 and Section 7 below. 

5. PERFORMANCE EVALUATION AND 
THE ACCEPTANCE-REJECTION METHOD 

In this section we shall show that the LR estimate c [see equation (92)] can be used for 
performance evaluation without resorting to the acceptance-rejection method. We will begin by 
explaining the acceptance-rejection method and why it is sometimes cumbersome. 

Let F(Y), Y E R”, be a multidimensional cdf with dependent components. It is known 
[e.g. 331 that for general cdfs it is difficult (computationally) to apply the well-known inverse 
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transform method; i.e. to generate a vector Y while solving the 
equations, 

F,(Y,) = u, 

F,(Y, I Y,) = u, 

.I 

213 

following system of nonlinear 

(96) 

FmW,I YI, . . .,ym--I)’ urn,) 

with respect to U = (U,, . . . , U,,,). Here U,, . . . , U,,, are iid random variables (random numbers) 
each distributed U(0, 1). In this case the acceptance-rejection method is often used. 

According to the acceptance-rejection method [33] one presents the pdff(y) as 

f(Y) = Ch(Y)&Y), (97) 

where c 2 1, 0 < h(y) < 1 and g(y) is a pdf from which random vectors Z = (Z,, . . . , Z,) can be 
readily generated [say, 

g(z) = fi giCzi> 
!=I 

and each RV Zi - g,(z,) can be readily generated by the inverse transform method]. Then one 
executes the following: 

Acceptance-rejection algorithm 

1. Generate Z from g(z). 
2. Generate U from U(0, I). 
3. If u, < f(Zi)/Ch(Zi), vi = 1) . . ) m, accept Z as a random vector generated from 

f(Y). 
4. Go to Step 1. 

The main drawback of the acceptance-rejection method is that the number of trials needed to 
generate a point from f(y) increases explosively with the dimensionality of YE R”. For more 
details, see Ref. [33, p. 511. 

Let us now compare briefly the efficiencies of both the CMC estimate $ [see equation (91)] and 
the LR estimate c [see equation (92)] for performance evaluation. 

IfmislargeandY=(Y,,..., Y,) must be generated by using the acceptance-rejection method 
then clearly $ is practically unrealizable. Deriving the alternative estimate t, however, might be 
much easier and less time-consuming, especially if we use the inverse transform method for 
generation from g(z). Note that while using 4 instead of ‘; one has to take into account (see 
Section 4.2) that usually 

Var 5 > Var 4, 

and Var c increases with m (Var W,, > Var Wrm2 [see formulas (71)-(73)] if m, > mz). Note also 
that g can be chosen not only with the view of avoiding generation from f but with the view of 
variance reduction (application of importance sampling) as well. 

Example 15 

Consider the reliability model (17). The CMC and the LR estimates can be written as 

q= $2, ,=I. ..p 
max min Y,, 

IEL I 

and 

max min Z,, 
f (Zs) 

J=l,....p ICL, go’ 

(99) 

respectively. 
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The expressions for 6 and 4 for the stochastic PERT network (18) are similar: we have to replace 
the operator “max min” by the “min C” operator, respectively. 

It is important to note that in both cases here and for heavy traffic performance evaluation, the 
estimate < is based on probability measure transformation fromfto g. Note, however, that in the 
first case g is introduced with the view of simulating an associated queue working in light traffic, 
while in the second case it is introduced with the view of avoiding generation fromf(y) by the 
acceptance-rejection method. 

It is clear that there might be cases wherein < can achieve both goals simultaneously to evaluate 
heavy traffic performance while simulating a light (lighter) traffic queue, and to avoid generating 
RVs from f(y) by using the acceptance-rejection method. 

Finally, it is important to note that the CMC estimate 6 is based on simulation of the original 
system while the LR estimate t is based on simulation of an artificial (auxiliary) system. 

6. EXTENSION OF THE MODEL 

In many applications not only the density f but the sample performance L depends on v. In this 
case,? 

W = E,,,,[W, Y)l = 1 L(v, Y)~(v, Y) dy. (W 

Clearly, model (1) is a particular case of model (100) with L(v, Y) = L(Y). 
We shall show that in this case one can again 

(i) estimate the sensitivities, 
(ii) extrapolate the performance, 

(iii) evaluate the heavy traffic performance 

and 

(iv) avoid generation from f(v, y) 

by using a single simulation and probability measure transformation. Consider cases (i)-(iv) 
separately. 

(i) As before, let 4 be a differentiation operator. Consider first DESS. In analogy to equation 
(7) we have 

4(W) = 4 s L(v, ylf(v, y> dy = Efcv, “‘“(;(;“;:y ’ ‘)I , f 1 (101) 

provided that both L and f are differentiable with respect to v and the operators 4 and integration 
are interchangeable. 

For the particular case where 4 = V, we readily obtain 

V/(v) = E,&.(v, Y)(V lnf (v, Y) + V In L(v, Y))] = EfJVL(v, Y) + L(v, Y)Vlnf (v, Y)]. (102) 

Unbiased estimates of I(v) and V[(v) are 

and 

TIN = A i [L(v, Y,)V lnf (v, Y,) + VL(v, Y,)], 
,- I 

(103) 

(104) 

respectively. 

tFor examples of such models, see Refs [3, Chap. 3; 18-201 
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The extension to DEDS is similar. In the analogy to equations (31) and (32) we have 
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f~.T(V) = iT+, ,t i Lli(v9 Yti) 

r-l r-1 

and 

Vz,r(M, v, = N-IT-’ f i [L,,(v, Yti)S,i(M9 v, Y,i) + vL,j(v, Yti)l3 

i=l I=I 

respectively. Higher order sensitivity estimates vZ,,(M, v), r = 2,3, . . . , can be readily 
from equation (105) as well. 

(105) 

(106) 

obtained 

Thus, again using the SF approach, we can estimate simultaneously from a singIe simulation the 
performance l(v) and all its sensitivities, 

Let us turn now to performance extrapolation and avoiding simulation from f(v, y). 

(ii) In analogy to equation (56) we have for N = 1, 

(iii) and (iv) In analogy to equation (92) the heavy traffic estimate and the estimate which avoids 
generation from f can be written for N = 1 as 

where 

g,(Zf) = fi gCzj)t zj N g(z), and g(z) 
]=t-T+I 

is chosen either with a view to generating a sample path L,(v, Z,) from an associated queue working 
under light traffic, or with a view to generating a random sample from g(z) by the inverse transform 
method, say, to avoid generating from f(y) by the acceptance-rejection method, say. 

Thus we have shown that for model (100) all four of the above-mentioned issues (i)-(iv) can 
be treated simultaneously while using a single simulation and some probability measure trans- 
formations. 

7. VARIANCE REDUCTION AND NUMERICAL RESULTS 

We shall consider here briefly application of linear and nonlinear control random variables to 
improve the accuracy of the “what if” estimator 1;(“,. Their application to the sensitivity estimator 
v.lN,T(v) can be found in Refs [l, 4, 6, 151. 

(a) Linear control random variable procedure 

Taking into acount that E( W,) = I, the linear control random variable procedure for 

can be written [e.g. 351 as 

f-(p) = f i L,W, + fl i ; w - 1 = X - B(C - l), 
1-l (Tf.1 ’ ) 

where 
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The value jI*, which minimizes Var[r((b)], is 

p* = 
Covar(X, C) 

Var(C) . 

In practice fl* is unknown and must be estimated from simulation. 

(b) Nonlinear control random variable procedure 

Since E( IF,) = 1, we can write Z(v’) [see equation (47)] as 

and consider 

where 

&.= f $ L,,w,i 
1-l 

c,=f $ w,,, 
1-l 

as an alternative to the LR estimator 1;(“, [see equation (56)]. 
Note that, following Glynn and Whitt [36], l”c can be called the nonlinear control random variable 

(NCRV) estimator of ratio type. 
It is readily shown [e.g. 51 that a lOO(1 - S)% confidence interval for l(v’) = E(X,)/E(C,) is 

where z, __6 = @(l - S), @ denotes the standard normal distribution function 

c=h i Ci and S2 
I-I 

is the sample variance of 0’ = Var(X,) - 2Z(v”)Covar(X’, C,) + [l(v”)]’ Var(C,). 
Note that for DESS, l’c reduces to 

where 

xi = L,W,, c,= w,, w, J (VT y:) 
’ frnYI> 

Table 2 presents numerical results for the “what if” problem assuming that I(v) (v = (1, p)) is 
the steady-state waiting time of a customer in an M/M/l system with interarrival rate 1, service 
rate ~1 and traffic intensity p = k/p. We simulated the M/M/l queue for p = 0.5, starting at the 
origin and using the batch mean method. We assumed that 1, = 1, p = 2, choose the number of 
batches N = 100 and we deleted the first 200 transient customers. More specifically. Table 2 
presents the theoretical values of 
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Table 2. Point estimators, sample variances and 95% confidence intervals.for the steady-state mean waiting time in an M/M/l queue with 
the LR estimator Tand the NCRV estimator p for p = 0.5, T = 50, h4 = 50 and N = 100 replications 

Parameters 

CC,(%) 

0.0 
+5.0 

+ 10.0 
f20.0 
+ 30.0 

+3.0 
+ 5.0 

+ 10.0 
+ 15.0 
f20.0 

0.0 
0.0 
0.0 
0.0 
0.0 

-3.0 
-5.0 

-10.0 
-15.0 
-20.0 

Theoret. 
value 

P 1 

Point estimators Sample variances 95% Confidence intervals 

i F st S: 

0.500 1.000 1.007 1.007 0 
0.525 I .053 1.036 1.045 0.065 
0.550 I.111 1.073 I.105 0.272 
0.600 1.250 I.134 1.235 1.356 
0.650 1.429 I. I73 1.350 3.909 
0.531 I .099 1.099 I.091 0.080 
0.553 I.176 1.183 I.157 0.256 
0.61 I 1.429 1.505 1.356 1.669 
0.676 I.818 1.921 I.570 6.018 
0.750 2.500 2.654 1.881 17.101 

0.134 0.134 0.936, 1.079 0.936, 1.079 
0.280 0.140 0.932, 1.139 0.971, I.118 
0.755 0.250 0.903, 1.243 1.007, 1.203 
3.433 I.102 0.771, 1.497 1.003, I.441 
9.851 4.116 0.558, 1.789 0.947, 1.753 
0.413 0.207 0.973. I.225 1.002. I.181 
0.947 0.308 0.992, 1.373 1.048, 1.265 
6.407 0.972 1.009, 2.001 1.162, 1.549 

24.8 I3 I.816 0.862, 2.774 1.298, I.841 
100.38 4.739 0.690, 4.617 1.457, 2.307 

s: 

where 

A1 AC1 CC,=~ and a*=---, 
P 

point estimators, sample variances and confidence intervals while using the LR estimator I”and the 
NCRV estimator l”c for different CI, and CQ. We choose T = M = 50 and use the same stream of 
random numbers for both Tand p. 

It follows from the results of Table 2 that the NCRV estimator F is more accurate than the LR 
estimator z It also follows from the results of Table 2 that using the NCRV estimator p we can 
get meaningful results while perturbing 1 by 30% with AWL = 0 or while perturbing both S and p 
by 15%, respectively. In other words, while simulating the M/M/l system with traffic intensity 
p = 0.5 (low traffic) and perturbing either k(Ap = 0) or both 5 and p we can extrapolate with l”c 
meaningfully the steady-state waiting time for p = 0.65 and p = 0.676 (higher traffic), respectively. 
Clearly, one has to take into consideration that a higher percentage of extrapolation with p is 
associated with higher variance. 

Table 3 presents simulation results for VI(k) = al(y)/aX (v = (31, p)), where I(v) is the expected 
waiting time of a customer in the M/M/l queue. We choose for p = 0.1, T = A4 = 10, and for 
p = 0.5, T = M = 30; and N = 100. It follows from Table 3 that the estimator v/(5) is more 
accurate than its counterpart Of@). 

8. CONCLUDING REMARKS 

In this paper we have shown that using the SF approach one can: 

(9 

(ii) 

(iii) 

(iv) 

Estimate simultaneously from a single simulation run the performance measure 
Z(v) and all the sensitivities V’/(v), I = 1,2, . . . , for both DESS and DEDS. 
Extrapolate from the same simulation run the performance l(v) (to solve the 
“what if” problem) for different values of v + Av”. 
Evaluate the performance of a simple queuing model working in heavy traffic 
while simulating an associated queuing model working in lighter traffic. The 
positive features of the proposed estimate c relative to the conventional CMC 
estimate $ are: 

(a) shorter transient period, 
(b) shorter batch size; 

its negative feature is its variance, 

(c) usually Var c > Var & and Var $ increases with the traffic intensity p’ of 
the associated queue. 

evaluate the performance I of stochastic models while generating a stream of 
RVs from an auxiliary pdf, say, g rather than from the original one J The 
advantage of such an estimate relative to its CMC counterpart can be substantial 
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3. Point estimators, sample variance and 95% confidence intervals for 81(I) = dl/aI. [1&p) is waiting time in the M/M/I queue) with 
the estimators v/(L) and v/(k) for N = 100 and p = 0.1 (M = 10) and 0 = 0.5 (M = 30) 

Theoret. values Point estimators Sample Variance 95% Confidence intervals 

0 M 10.. u) VI(I) i0.. u) B/(L) BICU sf sb. sl. with V/(b) with ?ItJ.l 

0.1 5.0 0.01 I I 0.0123 0.0111 0.0115 0.0132 0.000 0.0002 0.0001 0.005, 0.018 0.008, 0.019 
0.5 25.0 0.500 I.000 0.5171 0.9516 I .0343 0.053 4.91 I 3.266 0.517, 1.386 0.700, 1.368 

if, say, it is assumed that f must be generated by the acceptance-rejection 
method, and g can be generated by the inverse transform method, respectively, 
and if f is a multi-dimensional density. 

It is important to note that all four estimates mentioned above, namely: 

(i) sensitivity pZ(v) [and Z(v)& 
(ii) performance extrapolation h”,(v + Av’), s = 1, . . . , r; 

(iii); (iv) heavy traffic and one based on avoiding generation from f (both denoted 

0; 

require a single simulation experiment either with the original [cases (i) and (ii)] or with the 
associated [cases (iii) and (iv)] model and some measure transformations (application of the 
Radon-Nikodym theorem). 

Note that to improve the accuracy of the estimators variance-reduction techniques and especially 
NCRVs can be efficiently used (see Section 7 and Refs [l, 4-61). 

Implementation of the SF approach in all four cases (i)-(iv) is rather simple. For performance 
extrapolation and performance evaluation in heavy traffic we also proposed estimates (alternative 
to Gand c, respectively) based on the Taylor series expansion and discussed conditions under which 
they can give satisfactory results. 

9. SOME IDEAS FOR FURTHER RESEARCH 

We suggest the following directions for future research: 

6) 

(ii) 

(iii) 

(iv) 
(v) 

(vi) 

(vii) 

Apply efficient variance-reduction techniques (control variates, antihetic vari- 
ates, importance sampling etc) for further improvement of the accuracy of the 
sensitivity estimates $(1(v)) and the “what if” estimates I;(,,(v’) (and t). 
Apply the sensitivity analysis estimates &r(v) and AIDE (and in particular 
V/(v), v*/(v) and V/(v),,) to a broad variety of queuing networks. 
Apply the LR estimates 1;(“, and &) for performance extrapolation and perfor- 
mance evaluation of computer simulation models. 
Apply the sensitivity estimates for optimizing DESS and DEDS. 
Compare the efficiencies of Ho et al.‘s [37] lower variance biased PA estimate 
Vi(v),, with the higher variance, unbiased SF estimate Vi(v),,. 
Compare the efficiencies (say, in the sense of the mean square error) of the LR 
estimate I;(Y, (and &) with its counterpart Taylor series expansion estimates &. 
Investigate empirically and analytically how fast decreases the correlation 
between L, W, and L, + k W,,, (k is fixed) the batch size T as a function of W,. 
Clearly, one has to take into consideration the following trade-off while using 
the LR estimator c(v’) instead of the CMC estimator: the LR estimator t which 
uses shorter batches than its CMC counterpart has in general larger variance. 
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