DECISION MODELS

<u>Decisions Making Under Uncertainty</u>

- 1. Max-Min Criteria (pessimist)
- Best of the worst
- -Becomes (Min-Max) if loss table
- A. Find min (max) in each row
- B. Pick the best of the Max (Min)

Criteria Max-Max Criterion (Optimist)

-Best of the best

(min-min) if loss table

A. Find max (min) in each row

B. Pick the largest (smallest)

3. Weighted Average Criterion

nature - Coef. of Optimism = α

- Optimistic=1, pessimistic=0

A. Calculate weighted value expected

- α (best) + (1 α) (worst)
- B. Pick best value

4. Minimizing Regret

- Savage opportunity loss criteria
- A. Set up opportunity loss matrix
- subtract the largest number in each column from all other numbers in that <u>column</u>
- B. Find max regret in each row
- C. Pick the action with min. regret.

Decisions Making Under Risk

- 1. Expected Payoff (Average)
- A. Multiply payoffs by probabilities and add up. (For each action separately)
- B. Pick best action

2. Expected Opportunity Loss

A. Set up loss matrix

- -Subtract all numbers in each column from the largest number in that column B. Find average opportunity loss Becomes
- for each action.
- multiply the probability time loss and B. add up.
- C. Pick smallest number (want to min loss)

3. Most Probable State of Nature

- A. Determine the most probable state of (one with highest probability)
- B. Pick the action with the highest

payoff.

C. Good criteria for a non-repetitive Decision

5. Expected Value of Perfect Information

- A. Fix a state of nature.
 - B. Pick largest value in each column
 - C. Multiply prob. X largest values and add up = ERPI

ERPI=Expected Return of Perfect Info)

- D. EVPI = ERPI Average expected payoff
- E. EVPI is always equal to Expected opportunity loss.

6. Equal Likely Strategy (Laplace Criterion)

- Best on Average
- A. Expected payoffs for each row
- B. Pick the largest (max problem) (Smallest for min problems)

Numerical Example

Numerical Exa		<u>Nature</u>		
	(0.5)**	(0.3)**	(0.2)**	**Use Probabilities for Decision Under Risk Problems only.
Action	<u>Growth</u>	No Change	<u>Inflation</u>	olider Risk Frobletiis olliy.
Bonds	12%	6%	3%	
Stocks	15%	3%	-2%	
Deposit	6.5%	6.5%	6.5%	

Note: Objective is to Maximize

DECISION MAKING UNDER PURE UNCERTAINTY

1. Max-Min (Pess)	2. Max-Max (Opt)	3. <u>Weig</u>	<u>hted Average</u>
Min/Row	Max/Row	Action	Weighted Value ($\alpha = 0.7$)
3	12	В	$(.7)\ 12 + (.3)3 = 9.3$
-2	15 **	S	$(.7)\ 15 + (.3) - 2 = 9.9 **$
6.5 **	6.5	D	(.7) 6.5 + (.3) 6.5 = 6.5
3 -2	10	В	(.7) 12 + (.3)3 = 9.3 (.7) 15 + (.3)-2 = 9.9 **

Best Worst

4. Minimizing Regret

5. Equal Likely Strategy (LaPlace)

	unity Loss Growth	Matrix <u>No Change</u>	<u>Inflation</u>	Max/Row	Bonds**	Action 7 **
Bonds	-3 (12-15)	-0.5	-3.5	-3.5 **	Stocks	5.3
Stocks	0	-3.5	-8.5	-8.5	Deposit	6.5
Dep.	-8.5	0	0	-8.5		

DECISION MAKING UNDER RISK

1. Expected Payoff (Average)		2. Expected Opportunity Loss				c
1. <u>Lapecteu 1</u>	ayon (Average)		portunity	-	-	
Action Aver	rage Payoff_	<u>Act</u>	<u>G (.5)</u> N	o (.3)	<u>In (.2)</u>	<u>EOL</u>
** Bonds	(.5)12 + (.3)6 + (.2)3 = 8.4 **					
		B**	3 (15-12)	0.5	3.5	2.35**
Stocks	(.5)15 + (.3)3 + (.2)-2 = 8.0					
		S	0	3.5	8.5	2.75
Deposit	(.5)6.5 + (.3)6.5 + (.2)(6.5) = 6.5					
-		D	8.5	0	0	4.25

2	N/ +	D 1	1-1 - C+-+-	- C NI - 4
	IVIOST	Prona	inie State	of Nature

<u>Action</u>	<u>Growth (.5)</u>	Note: EOL is the sum of the (prob.* loss)
Bounds	12	3(.5) + .5(.3) + 3.5(.2) = 2.35
Stocks	15**	0(.5) + 3.5(.3) + 9.5(.2) = 2.75
Deposit	6.5	8.5(.5) + 0(3) + 0(.2) = 4.25

4. Expected Value of Perfect Information

EVPI = ERPI - Average Expected Payoff

Max Values from Each Column

	<u>Growth(.5)</u>	No Change(.3)	Inflation(.2)
	15	6.5	6.5
ERPI=	15(.5) +	6.5(.3) +	6.5(.2) = 10.75

EVPI = 10.75 - 8.4 = 2.35%

If information costs more than 2.35%, don't buy it. If you invest 100.000 should you buy info for 15,000? 2.35% (100,000) - 15,000 = -12,650 => NO!

DECISION TREES (Bayesian Approach)

1. Evaluate the Decision with Prior Probabilities

State of Nature

Action	A (High Sales) (.2)	B (Medium Sales) (.5)	C (No Sales) (.3)
A1 (Develop)	3000	2000	-6000
A2 (Don't)	0	0	0

Prior EMV: Develop: (.2)3000 + (.5)2000 + (.3)(-6000) = -200

Prior EMV (Don't): 0 **

2. Acquire Some Reliable Info (Not Perfect Info Due To Uncertainty)

GIVEN

Predicted	A (High)	B (Medium)	C (Small)	
Ap	8.0	0.1	0.1	
Вр	0.1	0.9	0.2	Consultant is best at
Ср	<u>0.1</u>	0.0	<u>0.</u> 7	Predicting medium sales.
Sum	1.0	1.0	1.0	

3. Revised (Posterior) Probabilities are Computed

Predictions

State of Nature	Ap	<u>b.</u>	Ap . P Bp . P Cp . P
A	.8 .1 .1 .2		.16 .02 .02
В	.1 .9 0 .5		.05 .45 0
С	.1 .2 .7 .3		<u> .03 .06 .21</u>
		Sum	.24 .53 .23 add-up to 1
	0.2 = P(Bp C)		.16/.24 .02/.53 .02/.23
Note: Table is inv	verted, now		= .667 = .038 = .087
rows add to equa	d 1.		.05/.24 .45/.53 0/.23
See decision tree	for use of values		= .208 = .849 = 0
			.03/.24 .06/.53 .21/.23
	0.113=P(C Bp)		<u> = .125 = .113 = .913</u>
		Sum	1 1 1

4. Expected Values Are Computed: See decision tree

- 5. A decision is made regarding whether or not to acquire the additional info. Then a choice is made immediately.
- 6. If a decision is made to buy the info, then the research is undertaken only after that, based on the results of the research, is the selection of an alternative made.

7. Expected Value of Perfect Information

EVPI = EMV (with devil help) - EMV (without devil help)

EMV (without his help) = 0

EVPI= (.2)3000 + (.5)2000 + (.3)0 - 0 = 1600

Best outcomes for each state of nature.

Efficiency of the Consultant = Expected Payoff (using consultant)/EVPI = 1000/1600 = 62.5%

<u>UTILITIES</u>: Utility: Value of \$ to <u>vou</u> based on your risk profile.

	Fire (.0005)	No Fire (.9995)	Expected Utility
Insure	-1	-1	-1 **
Don't Ins.	-10,000 0	-5	

How to find Utility of \$12

- $= (P) \times Utility of $15 + (1-P) \times Utility of -2
- Find "P" where you are indifferent. Once you have few points, graph and interpolate all other utilities.