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newer ones, remain. Thus, this chapter is 21 years overdue, leading to the questions: Why now and is
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Event Response Integrated Decision Advisories (ERICA), is shown. ERICA came about from 2009-2012
work in automated decision-making tools for the cockpit and the realization that the Revised Mission
Performance Model (R-MPM) and ERICA were interrelated.
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case of customers, if it happens that an almost identical proposal is made to two different clients who
are seeking different experiences. The analysis of human subjectivity shows that the interaction with
services goes beyond its mere use, as it is related to human beings’ search for meaning, and it can po-
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and communication technology (ICT) — an important tool to enhance efficiency and responsiveness in
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industry of China has not significantly increased since the 2009 survey but the general awareness of the
importance of ICT capabilities is growing.
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and technological requirements of the private cloud concept. A new version of the framework has been
developed and was used to help managers to address IT investment decisions on private cloud in an
international bank.
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With the evolution of information technology, firms offshore outsource services to developing and low
service cost countries to have cost as well competitive advantages. This is a growing practice, but there
has been limited empirical attention in understanding the outsourcing phenomenon, particularly from the
perspective of service provider firms that execute important business processes for their overseas clients.
This shows the need to study the factors that play a significant role in the growing trend to outsource
and why only a few service provider firms report success. In this chapter, the authors try to find factors
that influence performance of service provider firms. Multiple regressions using four indicators of firm
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Service (ITES) firms’ performance.
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ABSTRACT

This chapter provides a critical overview of Linear Programming (LP) from a manager’s perspective.
The main objective is to provide managers with the essentials of LP as well as cautionary notes and
defenses on common modeling issues and software limitations. The authors illustrate the findings by
solving a simple LP directly on the original decision variables and constraints space without adding
new variables or translating the model to fit a specific solution algorithm. The aims are the unification of
diverse set of topics in their natural states in a manner that are easy to understand and providing useful
information to the managers. The advances in computing software have brought LP tools to the desktop
for a variety of applications to support managerial decision-making. However, it is already recognized
that current LP tools, in ample circumstances, do not answer the managerial questions satisfactorily.
For instance, there is a costly difference between the mathematical and managerial interpretations of
sensitivity analysis. LP software packages provide one-change-at-a-time sensitivity results; the authors
develop the largest sensitivity region, which allows for simultaneous dependent and/or independent
changes, based on the optimal solution. The procedures are illustrated by numerical examples including
LP in standard-form and LP in non standard-form.
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Essentials of Linear Programming for Managers

1. INTRODUCTION

Linear programming (LP) has been afundamental
topic in the development of managerial decision-
making. The subject has its origins in the early
work of L. B. J. Fourier (1820s) on attempting
to solve systems of linear inequalities. However,
the wide spread use and acceptance of LP had to
wait until the invention of the Standard Simplex
Method.

1.1 Standard Simplex Method

Since World War II, LP has been used to solve
problems of various dimensions in almost all dis-
ciplines. The most popular solution algorithm is
the Simplex method that is implemented by most
LP software packages.

The Simplex algorithm can be considered as a
sub-gradient directional method, jumping from an
initial feasible vertex to aneighboring vertex of the
feasible region until itarrives atan optimal vertex.
The Simplex method requires that the model be
expressed in a special format called “Standard
Form”, that is, some constraints and variables
must be transformed. Consequently, when the
manager obtains a solution through the Simplex
method, she/he is left with the task of interpreting
and transforming the Simplex solution back to the
original managerial problem. However, this may
not be an easy task.

For instance, solving LP problems in which
some constraints are in (>) or (=) form with
non-negative right-hand side (RHS) has raised
difficulties. With that purpose, the simplex method
requires a feasible stating solution. When such
starting solution is not readily at-hand, alterna-
tive methods are necessary. One version of the
Simplex method, known as the two-phase method,
introduces an artificial objective function, which
is the sum of artificial variables (see Arsham
1997a, 1997b). Another version adds penalty
terms, which are the sum of artificial variables
with very large, positive coefficients. The latter

approach is known as the Big-M method, (see
Arsham 2006, 2007). On the other hand, using the
Dual Simplex method has its own difficulties. For
example, when some coefficients in the objective
function are not dual feasible, one must introduce
an artificial constraint. Handling equality (=)
constraints by the dual simplex method is tedious
because of the introduction of two new variables
for each equality constraint: one extraneous slack
variable and one surplus variable. Also, one may
notbe able toremove some equality (=) constraints
by elimination at the outset, as this may violate
the non-negativity condition introduced when
constructing the “Standard Form.”

Arsham (2013) proposes a tabular interior
boundary approach that intents to address these
concerns and solves the original managerial LP
model, without any need of “Standard Form”,
artificial variables, artificial constraints, and
Big-M. While these variants of the simplex suc-
cessfully handle an array of constraint forms, they
impose a burden and mathematical sophistication
on manager that make difficult the success of LP
applications.

1.2 The Costly Difference
Between the Managerial and
Modeler Interpretation

Koltai and Terlaky (2000) state that managerial
questions are not answered satisfactorily with
the mathematical interpretation of sensitivity
analysis. Software packages provide sensitivity
results focused on the optimality of a basis and
not on the optimality of the values of the decision
variables. The implementation of the misunder-
stood shadow prices and their range of validity
may coax managers to take poor decisions with
considerable financial losses and strategic con-
sequences. Another source of confusion is the
similarity of terms used in operations research (i.e.,
re-search, as a process), and other related fields.
For example, “shadow price” and “opportunity
cost” have somewhat different meanings in the LP
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and Economics literature. The “opportunity cost”
of an action in economics can be interpreted as
the “shadow price” of that action on the budget.

The LP software packages provide sensitivity
results about the optimality of a basis and not
about the optimality of the values of the deci-
sion variables and the shadow prices that are of
interest to the manager. In Section 6 we develop
the largest sensitivity region based on the optimal
vertex, and allows for simultaneous dependent/
independent changes.

1.3 The Confusion Between the
Model and the Solution Algorithm

Naturally,amodeler, reflecting the modeler’s deci-
sion problem, creates the LP model. On the other
hand, the solution algorithm is designed by, for
example, a systems analyst to solve LP problems.
B f the complexity of Simplex meth

confusion could creep-in when the modeler’s
model is developed into a tool using the software
solution algorithm. For instance, the algorithm
used in QM software and Management Scientists
make all variables non-negative. This may create
confusion as many LPs may contain negative or

Figure 1. Manager’s world vs. modeler’s world
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unrestricted variables. In this research work, the
algorithm adjusts itself to the original model and
solvesit, instead of changing the model. The deci-
sion maker easily understands the result, because
our method does not change the structure of the
original model. For example, while using Simplex
approach the need to transform constraints to
standard form changes the manager’s LP model to
something thatis not his and therefore the optimal
solution must be transferred back to the manager’s
problem. This can confuse the managers and lead
to costly misinterpretations. One must understand
the differences that could creep-in when a model
is formulated and when itis solved using a solver’s
solution algorithm; unfortunately the current state
of art of LP software do not differentiate and
causes confusions.

There exists a dichotomy between the reality
the managers have to deal with, the problems that
they face and the type of strategic decisions they
need to make, and the methods that modelers have
access to solve those problems. Research and
technology have brought great advances to the
decision-making process. However, more ad-
vances are needed to address directly the manag-
ers’ decision problems.
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The main issue is that most software pack-
ages make assumptions about the structure of the
problem, constraints have a certain direction; the
decision variables take certain sign-constraints.
These assumptions are without loss of generality;
however, they do have implications that modify the
original model and complicate the interpretation
of the solution for implementation. As a result,
the conceptual models from the manager’s envi-
ronment have to be translated into mathematical
models, gets translated and later into solution
models to fit software packages. Afterwards, these
solutions mustbe translated back into the real prob-
lem. This translation is often cumbersome for the
general user. While translating decision variable
might be doable with some effort, interpreting
sensitivity analyses from a modified model might
be out of reach. In that regard the mathematical
model should represent to the conceptual model.

We devoted Sections to show how to build the
largest sensitivity region based on the “optimal
solution”. These sections are independent of all
previous sections; in that one needs the optimal
solution in any way it is obtained. This develop-
ment differs significantly from the traditional
Simplex’s tableau approach that limits itself to the
“Preservation of the Basis”. No one expects the
Manager to understand and interpret the Basis cor-
rectly, but it is expected that a Manager should be
able tounderstand and interpret the optimal values
of his decision variables and the consequences of
any changes to them. The Dual generated from the
“Standard Form” does not look like the Manager’s
dual problem of his primal model.

The Operations Research (OR) processes must
be considered from the viewpoint of General
Systems Theory. The authors assert that without
a whole systems perspective OR can neither be
understood nor applied effectively. Typically, OR
problems can be broken down into five components
viz: (1) the “reality” of the problem, (2) the con-
ceptual model of the problem, (3) the conversion
of conceptual model to a mathematical model,
(4) solution determination of the mathematical

model, (5) managerial interpretation, and (6)
the implementation of the solution. The authors
believe that in most cases we have under-utilized
our knowledge (study) and limited the application
of the OR process. There have been extremely few
studies and applications of OR that satisfies the
systems point of view, Arsham (2012).

The remainder of this chapter is organized
in thirteen sections. Almost every section can
stand by itself, independent of previous sections.
Section 2 introduces linear programming models
from model builders and decision makers. Some
oddities are included. Section 3 describes the de-
cision maker’s environment explicitly in order to
enable them to understand the decision problem.
Section 4 explores the feasible region by using
algebra that is understandable by the decision
maker. The algebraic approach to solve linear
programs is given in Section 5, which includes
computation of slack and surplus variables. The
methodology solves LP model in an “as is” state,
without any need of “Standard form”, artificial
variables, artificial constraints, the Big-M, and
slack/surplus. Section 6 constructs the largest
sensitivity region for the right hand side of the
constraints based on the optimal solution. The
shadow prices are byproducts of the sensitivity
analysis. The dual problem formulationisincluded
in Section 7, which is general and easy to apply.
Section 8 considers the general sensitivity region
for the cost coefficients of the objective function.

Throughout this chapter we have used LPs of
two dimensions to save space but this method can
be extended to higher dimensions. Even for two
dimension problems we do not use the graphical
method because it is limited to two-dimensional
problems. Another reason to avoid graphical
methods is that in some textbooks the graphical
methods for finding the cost sensitivity range, and
interpretation of the shadow prices are misleading.
We use the algebraic approach throughout this
chapter to overcome these limitations. The solu-
tion to a non-standard form problem is outlined
in Section 9. Software implementation and their
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limitations are examined in Section 10. The sensi-
tivity analysis of the degenerate optimal vertex to
remain optimal is developedin Section 11. Section
12 does sensitivity analysis of multiple optimal
solutions. The existence of a curious property;
known as More-For-Less, or Less-For-More is
covered in Section 13. Concluding remarks are
summarized in Section 14.

2. LINEAR PROGRAMMING MODEL

In general terms, a linear programming model is a
mathematical approach for determining the set of
decisions necessary to achieve the best outcome
givenasetof resource limitations and requirements
represented as a system of linear equations. In
business, these can be the outsourcing conditions
and quantities to attain the lowest possible total
cost, or the production plan to get the maximum
profit, or the marketing mix to reach the highest
market penetration.

2.1 Linear Programming Model
We define the LP model in the most general way.

Problem P:
Max (or Min) CX
Subject to AX < a,
BX > b,
DX =d,
X 2>0,i=1,..,j
X <0,i=j+1,....k
X, unrestricted in sign, i = k+1,...,n

where matrices A, B, and D have p, q, and r rows,
respectively withncolumns and vectorsc, a,b, and
d have appropriate dimensions. Therefore, there
are m = (p + q + r + k) constraints and n decision
variables. It is assumed that m > n. Note that the
main constraints have been separated into three
subgroups. Without loss of generality, we assume
thatall RHS elements, a, b, and d are non-negative.

100

Essentials of Linear Programming for Managers

We do not deal with trivial cases, such as where
A =B =D =0 (no constraints), ora=b =d =
0 (all boundaries pass through the origin point),
or having LP with a single point feasible region.
We assume the LP has a no redundant constraints.

2.2 What Can Go Wrong in the
Process of Building a Linear
Programming (LP) Model?

At the modeling stage potential pitfalls exist
which affect any LP application; therefore, the
decision-maker and the modeler should be cog-
nizant of modeling phase of LP, Arsham (2008).
Thus, potential problems exist which affect any
linear programming application. Optimal solution
may be infeasible or unbounded, or there may be
multiple solutions. Degeneracy may also occur.
Figure 2 presents a classification of LP for model-
ing validation process:

2.3 Dual Problem Construction

Associated with each (primal) LP problem there
is a companion problem called its dual problem.
Table 1 is a classification of the decision vari-
able constraints is useful and easy to remember
in construction of the dual.

General Principles

e If the primal is a maximization problem,
then its dual is a minimization problem
(and vice versa).

e  For each constraint there is a dual decision
variable (and vice versa).

e  Use the variable type of one problem to find
the constraint type of the other problem.

e  Use the constraint type of one problem to
find the variable type of the other problem.

e  The RHS elements of one problem become
the objective function coefficients of the
other problem (and vice versa).
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Figure 2. A classification of LP for modeling validation and sensitivity analysis

Characteristic of the Feasible Region (FR)
l Bounded FR ‘ l Empty FR ‘ ‘ Unbounded FR |
No Solution
Degenerate Multiple
Solutions Solutions
Degenerate Multiple ~ Unbounded ~ Unique
Solutions Solutions ~ Solutions Solution
Unique ’
Solution Bounded Bounded and
Solutions Unbounded Solutions

Table 1. A One-to-one correspondence between the primal and the dual LP problems.

The Dual Problem Construction

Objective: Max (e.g. Profit)
Constraint types:

< a Sensible constraint

= a Restricted constraint

> an Unusual constraint

Objective: Min (e.g. Cost)
Constraint types:

> a Sensible constraint

= a Restricted constraint.

< an Unusual constraint.

Variables types:

> 0 a Sensible condition

unrestricted in sign

< 0 an Unusual condition

° The matrix coefficients of the constraints °
of one problem are the transpose of the ma-
trix coefficients of the constraints for the °

other problem. That is, rows of the matrix
become columns and vice versa.

Applications

One may use duality in a wide variety of applica-
tions including:

It may be more efficient to solve the dual
LP problem than the primal Problem.

The dual solution provides important eco-
nomical interpretation such as shadow
prices.

If a constraint in the primal is non-binding,
i.e., the LHS value is not equal to the RHS
value, then the associated variable in the
other problem is zero.
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Table 2. Possible combinations of primal and dual properties

Condition
Primal Problem Implies Dual Problem
Feasible; bounded objective “ Feasible; bounded objective
Feasible; unbounded objective - Infeasible
Infeasible — Feasible; unbounded objective
Multiple solutions < Degenerate solution
Degenerate solution © Multiple solutions

e Ifadecision variable in the primal problem
is not zero, then the associated constraint
in the dual problem is binding.

e  To obtain the sensitivity range of the RHS
of primal problem from the sensitivity
range of the cost coefficient in the other
problem (and vice versa).

Table 2 implies some possible combinations
of primal and dual problems.

Problems with LP Packages

Most LP software solvers have difficulties in
recognizing the last two cases in the above table
namely multiple optimal solutions and degenerate
optimal solution. Most LP software do not alert
the user about them yet produce sensitivity ranges
that are not valid. One must make ensure that the
solution is unique, and non-degenerate before
analyzing and applying the sensitivity ranges.

2.4 Ensuring the Formulation
Is Correct: Odd LP Models

Developing LP models with oddities can assist
in the process of ensuring that the formulation is
correct. However, almost all LP software solvers
have difficulties in recognizing these dark sides
of LP and/or giving any suggestions as remedies.
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2.4.1 Unbounded Solutions

Identification

If the shadow prices of the primal problem do
not satisfy the dual constraint, then the primal
problem is unbounded.

Occurrence

An unbound optimal solution means the con-
straints do not limit the optimal solution and the
feasible region is also unbounded, it effectively
extends to infinity.

Resolution

Inreal life, this is not possible. Check the objective
function. Possibly, the problem is a minimization
problem and maximization was selected instead.
Check the formulation of the constraints. Possibly,
one or more constraints are missing. Check also the
constraints for any incorrect specification in the
direction of the inequality, and numerical errors.

2.4.2 Infeasibility

Identification

There is no feasible solution, i.e., there is no
feasible vertex. The solution algorithm produces
no solution.
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Occurrence

An infeasible solution means the constraints are
too limiting and have left no feasible region. That
is, no solution satisfies all the constraints of the
problem.

Resolution

Check the constraints for any incorrect specifica-
tion in the direction of inequality constraints, and
numerical errors. If no error exists, then there are
conflicts of interests.

These and other odd situations, including
multiple solutions and in particular degeneracy,
are rare (except in network models since they
often have a redundant constraint, causing de-
generacy), and often result at the modeling stage.
The decision-maker sets the objective function,
while the constraints come from the decision-
maker environment, consequently, it is rare to get
multiple solutions, i.e. the objective function has
the coefficient proportional to those of at least
one binding constraint. In these cases, rounding
in the coefficient(s) could be the source of the
multiple solutions.

3. DECISION-MAKER’S
ENVIRONMENT

In the process of conceptualizing and building a
mathematical model of the business reality, it is
important to identify the mostimportant elements
and categorize them into performance measures,
uncontrollable inputs, parameters, controllable
inputs and strategies.

Understanding the problemrequires criteria for
grouping entities of the decision model in the same
category. Performance measure (or indicators),
that is, measuring business performance, should
be at the top of the decision-making process and
should align with the management goals. The
development of effective performance measures
is increasingly important for many organizations,

even though it remains challenging for organiza-
tions in the public sector or not-for-profit orga-
nizations, because the performance measures are
the drivers for the optimal strategy and determine
the direction for the organization.

The decision-making environment elements
are further discussed in the context of the follow-
ing numerical example.

An lllustrative Numerical Example

Consider the following mixed products LP prob-
lem of a price-taker small manufacturer producing
table and chairs. His objective is to maximize
net profit:

Maximize P(X) = 5X, + 3X,

Subject to 2X, + X, <40,
X, +2X, <50,
X, 20,X,>0.

Figure 3 analyzes and depicts his decision
environment.

The performance measure is important for the
decision maker as a measuring tool for success
and identifying the decision problem. Other ele-
ments of the decision-maker’s environment are
classified as follows:

e  Uncontrollable Inputs: These come from
the decision maker’s external environment.
Uncontrollable inputs often create the
problem and constrain the actions.

e  Parameters: Parameters are the constant
elements that do not change during the
time horizon of the decision review. These
are the factors partially defining the prob-
lem. Strategic decisions usually have lon-
ger time horizons than both the tactical
and the operational decisions, at different
levels of organization.

e  Controllable Inputs: The collection of
all possible courses of action the decision
maker might take.
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Figure 3. Decision-maker’s environment in a mixed product LP problem

Step 2: Uncontrollable inputs

$5| Marginal
Profits

$3

Step 4: Controllable inputs
X, : How many tables ?-

X, : How many chairs ?: Max P=5X, +3X,

Step 5: Interactions

Step 1: Performance measure

Subject to: 2X, + X, <40 ‘ s
Step 6: Best Strat ) P = Net Profit
ep 6:
P_ est Strategy X, + 2%, < 50
X, =10 Tables
X, =20 Chairs i X, X, 20
40 50 2 1
Labor Raw 1 2

Material| Technology

Matrix

Step 3: Problem’s parameters

e Interactions among these Components:
These are logical, mathematical functions
representing the cause-and-effect rela-
tionships among inputs, parameters, and
outcomes.

There are some constraints that are made up
of all the parameters. Therefore, they do not need
to be treated separately.

e  Actions: Action is the ultimate decision
and is the best course of strategy to achieve
the desirable outcome. Decision-making
involves the selection of a course of action
in the pursuit of one’s objective.

e  Controlling the Problem: Few prob-
lems in life, once solved, stay that way.
Changing conditions tend to create new
problems from the problems that were pre-
viously solved. Their solutions create new
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problems, adding new uncontrollable in-
puts, and /or new options. One must iden-
tify and anticipate these new problems and
recognize the cycle of such problems.

4. SOLVING THE SYSTEM OF
LINEAR INEQUALITIES

The widely used Simplex solution to an LP prob-
lem is strictly based on the theory and solution
of a system of linear inequalities (Arsham 2009).
The list of constraints in an LP model constitutes
a system of linear inequalities that define the
feasible region of the problem. The basic solu-
tions to a linear program are the solutions to the
systems of equations consisting of constraints at
binding positions. Not all basic solutions satisfy
all the constraints. Only those that do meet all the
constraint restrictions are called the basic feasible
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solutions. The basic feasible solutions correspond
precisely to the vertices of the feasible region.

Forillustration purposes we are going to follow
the Improved Algebraic Method (IAM) to solve
the system of linear inequalities. This method is
simple to understand and does not require the for-
mulation of an auxiliary LP problem like it might
require the Simplex method. This methodology
can also be extended to solve systems of linear
inequalities of higher dimensions.

We are interested in finding the vertices of
the feasible region of Problem P, expressed as a
system of linear equalities and inequalities.

Feasible Region S:
AX <a,
BX >b,
DX =d,

where some X. >0,1=1,...,j, X, <0,i=j+1,...,
k and X, unrestricted in sign, i = k+1,..., n. Ma-
trices A, B, and D as well as vectors a, b, and d
have appropriate dimensions.

Therefore, the optimization problem can be
expressed as:

Problem P:
Max (or min) C(X)
Subject to: X € S

4.1 Steps of the Improved
Algebraic Method (IAM)

Step 1. Convert all inequalities into equalities
including any variable restricted in sign.

Step 2. Calculate the difference between the
number of variables (n) and the number of
equations (m).

Step 3. Determine the solution to all square sys-
tems of equations, i.e., basic solutions. The
maximum number of systems of equations
to be solved is: m!/[n!(m-n)!].

Step 4. Check feasibility of each basic solution
obtained in Step 3 by using all the constraints
and identify the basic feasible solutions
(BES).

The coordinates of vertices are the BFSs of the
systems of equations obtained by setting some
of the constraints at binding (i.e., equality) posi-
tion. For a bounded feasible region, the number
of vertices is at most m!/[n!(m-n)!] where m is
the number of constraints and n is the number of
variables. Therefore, a BS is obtained by taking
any set of n equations then solving them, simul-
taneously. By plugging this BS in the constraints
of other equations, one can check for feasibility
of the BS. If it is feasible, then this solution is
a BFS that provides the coordinates of a corner
point of the feasible region.

4.2 Numerical Example For
Solving System of Inequalities

We provide a feasible region problem; FR1 to
illustrates the Improved Algebraic Method steps:

Feasible Region FR1:

12X, + 10X, > 12000 (D
10X, + 15X, < 15000 ()
X, 203

X,>0(4)

Because of constraints 2, 3 and 4, are enclos-
ing feasible region, therefore feasible region is
bounded with countable vertices. There will be
4 equations and 2 variables yielding 6 possible
combinations. The IAM provides six basic solu-
tions for the system of linear inequalities as shown
in Table 3.

There are 3 basic feasible solutions to the
system of inequalities namely:

A= (X,, X,) =(1000, 0),

B = (X,, X,) = (1500,0),
C = (X,, X,) =(375, 750).
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Table 3. The basic solutions of the numerical example FRI

Binding Constraints Solution (X, X) Feasible? Why?
1 and 2 (375, 750) Yes, all satisfied
1 and 3 (0, 1200) No, constraint 2 is not satisfied
1 and 4 (1000, 0) Yes, all satisfied
2 and 3 (0, 1000) No, constraint 1 is not satisfied
2 and 4 (1500, 0) Yes, all satisfied
3 and 4 0, 0) No, constraint 1 is not satisfied

4.3 Algebraic Presentation
of Feasible Region

Using the scalar parameters A1, A2, and A3 for the
3 vertices, respectively, we obtain the following
convex combination of vertices which is a paramet-
ric representation of the bounded feasible region:

X, = 100011 + 15002 + 37513
X, = 75003

for all parameters Al, A2, A3 such that each is
non-negative, and A1+ A2 + A3 = 1.

Note that the above representation is valid if
the feasible region is bounded. For example the
feasible region X, + X, < 1, X, >1, X, >0, is
unbounded contains one vertex only.

Moreover if feasible region is bounded it must
have more than one vertex. The feasible region
ole + X, = I,XI—X2= l,X] ZO,XZZO,has
feasible region with single point (1, 0). In the case
of unbounded feasible region one must includes
the needed rays, for numerical examples, see
Arsham (2008).

Some Useful Comment on
Algebraic Solution Method (IAM)

The main purpose of presenting the IAM is for
the manager to understand, use, gets useful infor-
mation, the major software use a refine version
of IAM. Therefore, for large problems based on
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software become apparent. There are special cases
when using IAM:

e  Ifthere is no feasible vertex, then the prob-
lem is infeasible, that is feasible region is
empty.

e  If the shadow price of the primal does not
satisfy the constraints of the dual problem
then the problem is unbounded.

e  If there are two distinct optimal vertices,
then the problem has multiple solutions. In
this case the dual has degenerate optimal
solution. The reverse is also true.

Notice that these results are not applicable to
trivial cases, such as a problem with no vertices,
such as: Maximize X1 + X2, subject to: X1+X2
= 1, all variable are unrestricted in sign. For
more oddities in LP modeling, visit the website:
The Tools for Modeling Validation Process: The
Dark Side of LP http://home.ubalt.edu/ntsbarsh/
opre640A/partv.htm

5. SOLVING LINEAR PROGRAMS
Consider the following linear program P1:

Problem P1:

Minimize C(X) = 18X + 10X,

Subject to: 12X, + 10X, > 12000
10X, + 15X, < 15000
X,X,20
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Substituting the parametric version of the fea-
sible region into the objective function, we obtain:

C(y) = 18X, + 10X, = 1800011 + 2700012 +
1425013

The optimal solution occurs when A3 = 1 and
all other A.’s are set to 0, with a minimum value
of 14250. The optimal solution is (X = 375, X,
= 750), the vertex corresponding to A3.

Let the terms with the largest (smallest) coeffi-
cients in C(A) be denoted by A, and A respectively.
Then the following proposition holds:

Proposition 1: The maximum (minimum) solution
of an LP with a bounded feasible region corre-
spond to the maximization (minimization) of the
parametric objective function C(L). Moreover,
since C(N) is a linear convex combination, the
optimal value of C(4) is obtained by setting A, or
Agequal to 1 and all other A, = 0.

Proof: Proof follows from applying the [AM
to

Max (Min) C(A)
Subject to: 7 A, =1, and all A, > 0.

The optimal solution can be found by enu-
merating all basic feasible solutions by applying
the IAM method to this optimization problem.
Since this feasible region is bounded it has a fi-
nite number of vertices, then this result suggests
that optimum is associated with the BFS yielding
the largest or smallest objective value, assuming
the problem is of maximization or minimization
type, respectively. The maximum and minimum
vertex of an LP correspond to A, =1 and A =1,
respectively. As a result, since C(A) is a (linear)
convex combination of its coefficients, the optimal
solution of C(A) is obtained by setting A, or A
equal to I and all other A, = 0.

As an application of this proposition, we have
the following useful result.

Fundamental Linear Programming Result: if
the optimal solution to an LP is bounded, then it
occurs at one of vertices of the feasible region.

From the above proposition, one might found
the tight bound for the objective function, if it
exists. For our numerical example we have the
following tight bound:

14250 < 18X, + 10X, < 27000
5.1 Computing Slack and Surplus

Given that the right-hand-side (RHS) of a con-
straint is non-negative, the slack is the leftover
amount of a resource (<) constraint, and surplus
is the access over a requirement (>) constraint.
These quantities represent the absolute values of
the difference between the RHS value and the
LHS (Left Hand Side) evaluated at an optimal
point. Having obtained an optimal solution,
one can compute the slack and surplus for each
constraint at optimality. Equality constraints are
always binding with zero slack/surplus.

Since this numerical example is a two-di-
mensional LP, one expects (at least) to have two
binding constraints. The binding constraints at
optimality are equations 1 and 2:

12X, + 10X, = 12000
10X, + 15X, = 15000

With surplus and slack value of zero, respec-
tively,i.e.,S, =0and S,=0which are the “Reduce
Cost” of the dual problem.

6. CONSTRUCTION OF THE
LARGEST SENSITIVITY
REGIONS BASED ON OPTIMAL
SOLUTION NOT “BASIS”

Suppose we obtained the optimal solution by
any means, such as graphical (for two dimen-
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sional problems), simplex, dual simplex or interior
methods. The following two sections construct
the largest sensitivity regions based on the given
optimal solution.

Wedevelop anovel approach to post-optimality
analysis for general LP problems given a unique
non-degenerate optimal solution this approach
provides a simple framework for the analysis of
any single or simultaneous change of right hand
side (RHS) or cost coefficients by solving the
nominal LP problem with perturbed RHS terms.
Assume that the LP is of size (mxn), i.e., it has
n decision variables and m constraints including
the non-negativity conditions (if any).

6.1 Computation of Shadow Prices

Step 1: Identify the n constraints that are binding
at optimal solution. If there is more than
n binding constraints, then the problem is
degenerate. The degenerate case are dealt
with in Section 10.

Step 2: Construct the parametric RHS of the
constraints, excluding the non-negativity
conditions.

Step 3: Solve the parametric system of equations
consisting of the binding constraints. This
provides the parametric optimal solution.

Step 4: Construct the simultaneous sensitivity
analysis by plugging-in the solution obtained
in Step 3, in all other remaining parametric
constraints, including the non-negativity
conditions (if any).

Step 5: Plug in the parametric optimal solution
into the objective function. The coefficient
for each parameter is the shadow price for
that binding constraint. By definition, the
shadow price for a non-binding constraint
is always zero.

Following the above steps for our numerical
example, one must first solve the following RHS
parametric system of equations. By setting all
inequalities in binding positions and solving the
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system of equations, we get the following para-
metric solution:

12X, + 10X, = 12000 + r,
10X, + 15X, = 15000 +,

Solving this parametric system of equation for
X1 and X2, we have:

X, =375 + 3/16r, -1/8r,
X, =750 -1/8r, + 3/20r,

The solution can be verified by substitution. For
the higher dimension LP, the parametric solution
can be obtained by using the JavaScript:

http://www.mirrorservice.org/sites/home.ub-
alt.edu/ntsbarsh/Business-stat/otherapplets/
PaRHSSyEqu.htm

Forlarge-scale problems one may use symbolic
software such as Maple, Matlab, or Mathematica.

The parametric optimal solution shows the
impact of changes on the RHS on the optimal
decision variables. For example, if the RHS of
constraint 1 increases the quantity of X, will in-
crease and X, decreases. This is often a concept
misunderstood or overlooked by managers.

Plugging the parametric solution into objective
function, we have:

18X, + 10X, = 14250 + 17/8r, - 3/4r,

The shadow prices are the coefficients of the
parametric optimal function, i.e., U, = 17/8 and
U, = -3/4, for the RHS of constraints 1 and 2,
respectively. They are the rate of change in opti-
mal value with respect to changes in the RHS of
each constraint.
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6.3 Construction of the RHS
Sensitivity Region: Maintaining the
Validity of Current Shadow Prices

Notice that the parametric objective function
14250 + 17/8r, - 3/4r, is valid when the paramet-
ric solution satisfies all other (i.e., non-binding)
constraints. In the current numerical example, the
other constraints are:

X, ZOandX2 > 0.
These produce the following conditions:

375 +3/16r, - 1/8r, > 0, and 750 - 1/8r, + 3/20r,
> 0.

Notice that this is the largest sensitivity region
for the RHS of the binding constraints that allows
for simultaneous, dependent/independent changes.
This convex region is non-empty since it always
contains the origin (r, =0, r, = 0), with a vertex at
(r,=-12000, r, = -15000) where both right-hand
sides binding constraints.

Arsham (1990) gives detail treatments of the
most popular sensitivity analysis, including the
100% rule, and the tolerance analysis.

6.4 Sensitivity Range for Each
RHS of the Binding Constraints

The above set of inequality sensitivity region
can be used to find the ordinary sensitivity range
(one change-at a time) for the RHS values of the
constraints. The range for the RHS of the first
constraint (RHS ) can be obtained by settingr, =0
in the inequalities set (2). This provides r, <6000
and r > -2000. Therefore, the allowable increase
and decrease in the original value 12000 for RHS
are 6000 and 2000, respectively, i.e., the current
set of shadow prices remain valid as long as:

10000 < RHS, < 18000 and RHS, = 15000.

Similarly, the range for the RHS of the second
constraint (RHS,) can be obtained by setting r
= 0 in the inequality set (2). This implies that r,
< 3000 and r, > -5000. Therefore the allowable
increase and decrease in the original value 15000
for RHS, are 3000 and 5000, respectively, i.e., the
current setof shadow prices remain valid as long as:

RHS, = 12000 and 10000 < RHS, < 18000.

6.5 Sensitivity Range for the
Non-Binding Constraints

Inthe numerical example P1, the non-binding con-
straints are the non-negativity conditions which are
not subject to sensitivity analysis. Consequently,
forillustration purposes letus pretend “as if”’ there
is a non-binding constraint X, + 100X, > 20000.
To find the sensitivity range (one-change-at-a-
time), construct the parametric form and plug in
the optimal solution. We get

X, + 100X, > 20000 + 1,
375 + 100 (750) = 75375 > 20000 +,
r, < 55375

The amount of increase is 55375 and decreas-
ing amount is unlimited; i.e., (RHS, < 75375).

The following proposition formalizes the shift-
ing of parametric non-binding constraints.

Proposition 2: For any given point X° = (X °,
D LA , X, °) the parameter r value for any re-
source/production constraint is proportional to
the ordinary distance between the point X° and
the hyper-plane of the constraint.

Proof: Proof follows from the fact that the
distance from point X° = (X °, X,°, ....... , X, %) to
any non-binding constraint, i.e.

a X°+a X°+..+a X °=b+r
n n

18
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This reduces to:
Absoluter/ (a*+aj>+....+a?)".

Therefore the parameter r value is proportional
to the distance with a constant proportionality 1
/(a’+a? +...4+ a?)". This is independent of
point X°. In the above example, X° is the optimal
vertex. This completes the proof.

6.6. Behavior of Changes in the
RHS Values of the Optimal Value

To study the directional changes in the optimal
value with respect to changes in the RHS (with
no redundant constraints present, and all RHS >
0), we distinguish the following two cases:

Case I: Maximization problem

For < constraint: The change is in the same
direction. That is, increasing the value of
RHS does not decrease the optimal value.
It increases or remains the same depending
on whether the constraint is a binding or
non-binding constraint.

For > constraint: The change is in the reverse
direction. That is, increasing the value of
RHS does not increase the optimal value.
It decreases or remains the same depending
on whether the constraint is a binding or
non-binding constraint.

For = constraint: The change could be in either
direction (see the More-for-less section).

Case II: Minimization problem
For > type constraint: The change is in the
reverse direction. That is, increasing the

value of RHS does not increase the optimal
value (rather, it decreases or has no change
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depending on whether the constraint is a
binding or non-binding constraint).

For < type constraint: The change is in the same
direction. That is, increasing the value of
RHS does not decrease the optimal value
(rather, increases or has no change depend-
ing on whether the constraint is a binding
or non-binding constraint).

For = constraint: The change could be in either
direction (see the More-for-less section).

7. GENERAL SENSITIVITY REGION
FOR COST COEFFICIENTS:
MAINTAINING THE VALIDITY

OF CURRENT OPTIMAL

VERTEX NOT “BASIS”

Knowing the unique optimal solution for the
dual problem by using any LP solver, one may
construct the simultaneous sensitivity analysis
for all coefficients of the objective function of the
primal problem as follows. Assume that the dual
problem has n decision variables and m constraints,
including the non-negativity conditions (if any).

7.1 Steps in Finding Sensitivity
Region for the Objective
Function Coefficients

Step 0: Construct and solve the dual problem.

Step 1: Identify the n constraints that are binding
at optimal solution (that is, at the shadow
prices of the primal problem). If there are
more than n constraints binding, then the
primal problem may have multiple solutions.

Step 2: Construct the parametric RHS of the
constraints, excluding the non-negativity
conditions.

Step 3: Solve the parametric system of equations
consisting of the binding constraints. This
provides the parametric optimal solution.

Step 4: Construct simultaneous sensitivity
region by plugging in the parametric solu-
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Table 4.

Primal Problem P1: Classifications

Minimize C(X) = 18X, + 10X, Minimization Problem
Subject to: 12X, + 10X, > 12000

10X, + 15X, < 15000

Sensible Constraint
Unusual Constraint
X, >0 Sensible Condition
X,>0 Sensible Condition
The Dual Problem of Problem P1 is:
Maximize 12000U, + 15000U,

Maximization Problem

Subject to: 12U, + 10U, < 18 Sensible Constraint

10U, + 15U, < 10 Sensible Constraint
U >0 Sensible Condition
U,<0 Unusual Condition

tion obtained in Step 3, in all non-binding
constraints, including the sign conditions
such as non-negativity conditions (if any).

We demonstrate the method in our example. The
dual problem of our numerical example is con-
structed in Table 4.

The components of the optimal solution to the
dual problem are the shadow prices to the original
(primal) LP model, and vise versa. The shadow
prices of the primal, i.e., (U, = 17/8, U, = -3/4),
as calculated earlier (or one can solve it afresh
withoutreferring to previous section). The optimal
value for the dual 12000(17/8) + 15000(-3/4) =
14250 that is equal to the optimal value of the
primal problem, as always expected. The prop-
erty that let the primal and the dual optimal values
to be equal is known as strong duality, i.e., there
is no gape between the dual and primal problem.
The slacks of the first two constraints are 12(17/8)
+ 10(-3/4) -18 = 0, 10(17/8) + 15(-3/4) -10 =0,
which are the “Reduce Cost” of the primal prob-
lem.

To find the ranges for the objective function
coefficients, one may use the RHS parametric
version of the dual problem;

The parametric presentations of the RHS of
the binding constraints are as follows:

12U+ 10U, = 18 + ¢,
10U, + 15U, = 10 + c,,

Solving these parametric equations we obtain

U, = 17/8 +3/16c¢, -1/8c,
U, = -3/4 -1/8¢, +3/20c,

Plugging this solution into objective function
of the dual problem, we obtain the parametric
objective function is 14250 + 375¢, + 750c, with
optimal value of 14250, same as for the optimal
value of the primal problem, as expected. Again,
this parametric optimal solution is subject to
satisfying the unused constraints; namely, U, > 0
and U, < 0. These produce the following largest
sensitivity region for the objective function coef-
ficients of the primal problem P1, simultaneously:

3/16¢, -1/8¢, > -17/8 and -1/8¢, +3/20c, < 3/4.

Notice that this is the largest sensitivity region
for cost coefficients, allowing for simultaneous,
dependent/independent changes. This convex
region is non-empty because it contains the origin
(¢,=0,¢c,=0), with a vertex at (¢, =-18, ¢, =-10)
which is the negative of the both cost coefficients.

The ordinary sensitivity range (one change at
a time) of the coefficient of first decision vari-
able X, currently at 18, can be found by setting
¢, = 0 in the above sensitivity region inequality
set, yielding ¢, > -6 and ¢, > -34/3. Therefore the
allowable decrease for the coefficient of X is 6
with unbounded (i.e., Big-M) allowable increase.
Similarly, the sensitivity range of the coefficient of
second decision variable X, currently at 10, can
be found by setting ¢, = 0 in the above sensitivity
region inequality set, yielding ¢, < 5 and ¢, <17.
Hence, ¢, < 5, therefore, the allowable increase
for the coefficient of X is 5 with unbounded al-
lowable decrease, (i.e., - Big-M).
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Figure 4. Problem P3 feasible region

Iso-Value Objective Function
\ 5X,+3X,=8

X, -X,=0

7.2 Finding the Cost Sensitivity
Range by the Graphical Method
Could Be Misleading

It is a commonly held belief that one can com-
pute the cost sensitivity range by bracketing the
slope of the (iso-value) objective function by the
slopes of the two lines resulting from the binding
constraints. This graphical slope-based method
to compute the sensitivity ranges is described
in popular textbooks, such as Anderson et al.,
(2007), Lawrence and Pasternack (2002), and
Taylor (2010). However, this approachis only valid
when the objective function and the two binding
constraints have all slopes with the same sign,
that is, all three functions have negative slopes
or all three functions have positive slopes. The
approach fails if one of the binding constraints
has a non-negativity condition or the binding
constraints have opposite signs. The following
counterexample illustrating the later case.

Problem P3:
Maximize 5X + 3X,
Subject to: X +X,<2
X -X,<0
X, >20,X,>0
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The optimal solution, (X, X,) = (1, 1), is
determined by the two main constraints. The iso-
value objective function line and first constraint
boundary line have negative slopes, while the
other constraint has positive slope. Bracketing the
objective function slope between the slopes of the
two constraints gives -1 < - C/C, < 1, which is
an incorrect range. Notice that, not even the cur-
rent objective function slope -5/3 belongs to this
range. The main reason is that in this problem to
transition the slope from negative to positive it
has to go through being very large and negative,
then undefined, and then very large and positive,
as opposed to go through zero. Then, the correct
ranges are C, > 3, and -5 < C, < 5, respectively,
found by equating the ratio of coefficients from
the objective function plus and from each of the
constraints as follow:

(5+c)/1=3/1 givesc, = -2
(5+c¢)/1=3/-1 gives ¢, = -8

where ¢ represents the largest possible change in
the coefficient. A positive number represents the
largest possible increase, while a negative number
represents the largest possible decrease.

Therefore, since ¢, =-2 is more restrictive than
¢, = -8, you may decrease C, = 5, by 2. There is
no lower limit, thus C1 > 3.

On the other hand, for C, we obtain an upper
and lower bound

(3+c,)/1=5/1 gives ¢, =2
(3+ ¢)/-1=5/1 gives ¢, = -8

Therefore you may decrease C,=3,by 8,-5 <
C,, and you may increase C,=3, by 2,i.e. C, <5.

7.3 Shadow Prices as the
Lagrangian Multipliers

The dual solution provides important economical
interpretation such as the marginal values of the
RHS elements. The elements of the dual solution
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are known as the Lagrangian multipliers because
they provide (a tight) bound on the optimal value
of the primal, and vise versa. For example, con-
sidering our numerical example the dual solution
can be used to find a lower tight bound for the
optimal value, as follow: Multiply each constraint
by its corresponding dual solution and then add
them up, we get:

17/8 [12X, + 10X, > 12000]
S3/4 110X, + 15X, < 15000]

18X, + 10X, > 14250

Notice that the resultant on the left side is the
objective function of the primal problem, and this
lower bound is a tight one, since the optimal value
is 14250. In other words, the objective function
lower bound is 14250, which is the optimal value
for the minimization of the objective function 18X,
+ 10X,. Moreover, the optimal value for both
problems, dual and primal is always the same. This
fact is referred to as equilibrium of economical
systems, and efficiency in Pareto’s sense between
the Primal and the Dual Problems. Therefore, there
is no duality gap in linear programming.

7.4 Misinterpretation of
the Shadow Price

The Shadow Price tells us how much the objective
function will change if we change the right-hand
side of the corresponding constraint. This is often
called the “marginal value”, “dual prices” or “dual
value”, for the constraint. Therefore, the shadow
price may not be same as the “Market price, i.e.,
real price”.

For each RHS constraint, the Shadow Price
tells us exactly how much the objective function
will change if we change the RHS of the cor-
responding constraint within the limits given in
the sensitivity range on the RHS’s. Therefore, for
each RHS value, the shadow price is the rate of

change in the optimal value caused by any allow-
able increase or decrease in the RHS.

Unfortunately, there are misconceptions re-
garding the definition of the shadow price. One
such misinterpretationis, “Inlinear programming
problems the shadow price of a constraint is the
difference between the optimized value of the
objective function and the value of the objective
function, evaluated at the optional basis, when the
right hand side (RHS) of a constraint is increased
by one unit.” “Shadow Prices: The shadow prices
for a Linear Programming problem are the solu-
tions to its dual. The i shadow price is the change
in the objective function resulting from a one-unit
increase in the i coordinate of b. A shadow price
is also the amount that an investor would have to
pay for one unit of a resource in order to buy out
the manufacturer.”

Consider the following LP as a counterex-
ample:

Problem P3:

Maximize X,

Subject to: X, + X, <2
25X, +4X,<10
X, 20,X,>20

This problem attains its optimal solution at (0,
2) with an optimal value of 2. Suppose we wish
to compute the shadow price of the first resource
that is the RHS of the first constraint. Changing
the RHS of the first constraint by increasing it by
one unit results in:

Maximize X2

Subject to: X1 + X2 <3
2.5X1+4X2<10
X 20,X,>20

The new problem has the optimal solution (0,
2.5) with an optimal value of 2.5.

Therefore, it seems “as-if”” the shadow price for
this resource is 2.5 - 2 = 0.5. In fact the shadow
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price for this resource is 1, which can be found
by constructing and solving the dual problem.

The reason for this error becomes evident if we
notice that the allowable increase to maintain the
validity of the shadow price of the first resource
is 0.5. The increase by 1 is beyond the allowable
change on the first RHS value.

Now suppose we change the same RHS value
by, increasing say, by 0.1, which is permissible
(compared with its nominal value of 2), then the
optimal value for the new problem is 2.1. There-
fore the shadow price is (2.1 -2) / 0.1 = 1. We
must be careful when calculating shadow prices
using this approach the change must be within
allowable limits.

If you wish to compute the shadow price of a
RHS when its sensitivity range is not available,
you may obtain the optimal values for at least two
perturbations. If the rate of change for both cases
gives you the same values, then this rate is indeed
the shadow price. As an example, suppose we per-
turb the RHS of the first constraint by +0.02 and
-0.01. Resolving the problem after these changes
using your LP solver, the optimal values are 2.02,
and 1.09, respectively. Since the optimal value for
the nominal problem (without any perturbation)
is equal to 2, the rate of change for the two cases
are: (2.02 - 2)/0.02 = 1, and (1.09 - 2)/(-0.01) =
1, respectively. Since these two rates are the same,
we conclude that the shadow price for the RHS of
the first constraint is indeed equal to 1.

7.5 Managerial Round-Off Errors

Youmustbe careful whenever youround the value
of shadow prices. For example, the shadow price
of the resource constraint in the above problem
is 8/3; therefore, if you wish to buy more of this
resource, you should not pay additional price
more than $2.66. Whenever you want to sell any
unit of this resource, you should not sell it at an
additional price below $2.67.

A similar error might occur whenever you
round the limits on the sensitivity ranges. One
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must be careful because the upper limit and lower
limit must be rounded down and up, respectively.

8. DEALING WITH NON-STANDARD
FORM LP PROBLEMS

Creating the
Non-Negativity Conditions

By default, most LP software such as Management
Scientist (1999), and QM for Windows (2003),
assume that all variables are non-negative.

To achieve this requirement, convert any unre-
stricted variable X, to two non-negative variables
by substituting y - X for every X, This increases
the dimensionality of the problem by only one
(introduce one y variable) regardless of how many
variables are unrestricted.

If any X, variable is restricted to be non-
positive, substitute - X, for every X. This reduces
the complexity of the problem.

Solve the converted problem and then substitute
these changes back to get the values for the original
variables and optimal value is straightforward.
However, to convertsensitivity analyses including
the shadow prices are not easy tasks. Consider the
following LP problem:

Problem P4:
Maximize X +0X,
Subject To:
X +X,20
2X, +X,<2

0
0

=

< X
IA IV

1
2
Following the IAM solution algorithm, opti-
mal solution is at vertex X, =2, X, = -2, which
is depicted in Figure 5.
Performing the sensitivity analysis based on
optimal vertex to maintaining the optimal vertex,

we construct the following parametric RHS of
binding constraints:



Essentials of Linear Programming for Managers

Figure 5. A typical feasible region for a non-
standard form LP

A
X2

88}

X1+X2=0 2X1+ X2 =

S8}

X1

\ 4

X, +X,=0+R,
2X, +X,=2+R,

The parametric optimal solution is:

X,=2-R +R,
X,=-2+2R, -R,

We plug the parametric solution into objective
function, we have:

X,=2-R, +R,

The shadow prices are the coefficients of the
parametric optimal function, i.e.,U =-land U, =
1, for the RHS of constraints 1 and 2, respectively.
They are the rate of change in optimal value with
respect to changes in the RHS of each constraint.

The shadow prices remain valid as long as this
parametric optimal solution satisfy all the other
constraints, i.e., X, > 0 and X, <0. This gives the
largest sensitivity region for the RHS.

2-R,+R,>0
2+2R,-R,<0

Figure 6. The largest sensitivity region for the
RHS of first and second constraints

A
R2

—-R1+R2=-2
R1

v

/

The sensitivity region is convex and non-empty,
containing the origin (0, 0) and its vertex is at (0,
-2), as shown in Figure 4.

Figure 6 presents the largest sensitivity region
for the RHS for which the shadow prices remain
unchanged, i.e., the optimal dual problem vertex
remains optimal.

The ordinary sensitivity range is R, < 1 for
the first RHS and R,>-2 for the second, as can
be verified from the largest sensitivity region for
the RHS depicted in Figure 4.

We now perform sensitivity analysis on the
objective function coefficient. The dual problem
is constructed in Table 5.

The optimal solution is the shadow prices (U,
= -1, U, = 1), with optimal value of OU, + 2U,
= 2, same as primal, as expected.

U, +2U,=1+C,
U +U,=0+C,

The dual parametric solution is:

U =-1-C, +2C,
U,=1+C,-C,
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Table 5.

The Primal Problem: Classifications

Maximize X, +0X, Maximization

Subject To:

X, +X,20 Unusual
2X, +X,<2 Sensible
X, >0 Sensible
X,<0 Unusual

Therefore the dual formulation is:

The Dual Problem:

Minimize OU, + 2U, Minimization

Subject To:

U +2U0,>1 Sensible
U +U,<0 Unusual
U <0 Unusual
U,>0 Sensible

The solution must satisfy the other con-
straints:

1-C,+2C,<0
14+C,-C,20

Figure 7 depicts the largest sensitivity region
for the coefficients of objective function, i.e.,
the optimal solution remains unchanged, i.e., the

Figure 7. The largest sensitivity region for the
coefficients of objective function

-Cl1+2C2 =1

C1
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optimal vertex for the primal problem remains
optimal.

One Change at a Time (i.e., Ordinary
Sensitivity Range)

Set C, = 0, then C, > -1, that is, the allowable
decrease is -1, and allowable increase is big-M
(i.e., alarge nonspecific positive number). Set C,
=0, Then C, < 1/2, that s, the allowable increase
is 0.5, and allowable decrease is -big-M.

The parametric objective function is:

0U, +2U, =2 +2C, - 2C,

With shadow prices (X, = 2, X, = -2) which
is solution to the primal with optimal value of X|
+0X, = 2, as expected.

9. SOFTWARE PACKAGES
SHADOW PRICE AND SENSITIVITY
ANALYSIS REPORTS

In the previous Sections we solved manually stan-
dard form problem P1 and the non-standard form
problem P2 and then compared the results with
the results obtained by some of the LP packages
available in the market.

Unfortunately several of these educational LP
software packages give misleading and incomplete
results that could increase complexity for the man-
ager. Forinstance, the widely used LINDO (2003)
LP software does not provide any direct warnings
about the existence of multiple nor degenerate
optimal solutions. Or the other hand WinQSB
(2003) might indicates “Note: Alternate Solution
Exists!!” when in fact there might be none. As a
result, the final report on sensitivity analysis might
not be valid in these cases, Lin (2010). Similarly,
several other LP software packages have their own
limitations listed in Tables 6 and 7.
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Table 6. Scope and limitations of some popular software

Non-Negativity
Conditions

Shadow Prices

Optimal Solution to
non-standard form
problems

Sensitivity Ranges

unrestricted.

Lindo Imposed on all variables | Non-consistent May need conversion May need conversion

(2003) by default, but can be which is not an easy task
changed to un-restricted

WinQSB A variable must be Consistent May need conversion Unreliable

(2003) either non-negative or

QM for Windows
(2003)

All variables must be
non-negative

Non-consistent

May need conversion

Difficult to Convert

Management Scientist
(1999)

All variables must be
non-negative

Non-consistent

May need conversion

May need conversion
which is not an easy task

Excel Solver
(20013)

All variables are non-
negative or un-restricted

Consistent

Readily Available

Reliable

Table 7. The standard form numerical example P1 summary results as a base for comparison with

popular software
Optimal Objective Allowable Allowable
Variables Name Solution Coefficient Increase Decrease
X1 375.0 18 M 6
X2 750.0 10 5 M
Shadow Slack Allowable Allowable
Constraints Price Surplus Increase Decrease
12X1 + 10X2 >= 12000 2.125 0 6000 2000
10X1 + 15X2 <= 15000 -0.75 0 3000 5000

LINDO produces the output displayed in List-
ing 1 for the first numerical example P1, which
is in standard form.

In this LINDO final report the dual prices are
reported to be U =-2.125, and U, = 0.75, while
we found earlier that the shadow prices are U, =
2.125, and U, = - 0.75. Even the term Dual
Prices (i.e., Dual solution, are the shadow Prices)
is confusing as the values U =-2.125,and U, =
0.75 are not a solution to the dual problem.

This misleading resultis notlimited to LINDO,
unfortunately, at least two other LP software
packages namely Quantitative Methods (QM
2003) and Management Scientist (1999) produce
misleading results.

9.1 Shadow Prices Might
Have Different Sign

When reading and interpreting Shadow Prices
from software packages, managers must be es-
pecially attentive to the software description of
the analysis.

There are no common accepted practices in
Sensitivity Reports. For example, LINDO, Excel
Solver and GAMS (2013) use different notation
in their reports. In general, the terms shadow
prices and dual prices are used interchangeable;
however, if we compare the reports by LINDO and
by hand-computation of numerical example P1,

117



Essentials of Linear Programming for Managers

Listing 1. Input and output of LINDO software package for the first numerical example

LINDO INPUT and OUTPUT

Minimize 18X1 +10X2

Subject to 12X1 + 10X2 >12000
10X1 +15X2 < 15000

End

LP OPTIMUM FOUND AT STEP 2
OBJECTIVE FUNCTION VALUE

1) 14250.0
VARIABLE VALUE REDUCED COST
X1 375.0 0.0
X2 750.0 0.0
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.0 -2.125
3) 0.0 0.75

NO. ITERATIONS= 2

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

ALLOWABLE INCREASE ALLOWABLE DECREASE

INFINITY 6.0
5.0 INFINITY

RIGHTHAND SIDE RANGES

VARIABLE CURRENT COEF
X1 18.0
X2 10.0
ROW CURRENT RHS
2 12000.0
3 15000.0

we see that the dual prices from LINDO have the
opposite sign of the shadow prices from Solver.

The Lindo (2013) Manual gives the following
justification and interpretation:

...improve is a relative term. In a minimization
problem, such as our example, interpreting the
dual price requires some thought. The dual price
.., 1S ....-. This means raising the right-hand side
of the... constraint by one unit would cause the
objective to “improve” by negative 100. That is,
it would increase ... In other words, the marginal
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ALLOWABLE INCREASE ALLOWABLE DECREASE

6000.0
3000.0

2000.0
5000.0

cost of providing one additional ...in additional
salary expense.” “Dual prices are sometimes
called shadow prices, because they tell you how
much you should be willing to pay for additional
units of a resource. Going back to the Friday con-
straint, if we use the shadow price interpretation
of the dual price, we can also say that we should
be willing to pay .... to have an additional... If
...available for less than .., then we might want
to consider this option.” “As with reduced costs,
dual prices are valid only over a limited range.
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Notice thatunfortunately Excel Manual (2013)

also uses the terms like “unit change”, “unit in-
crease” while defining shadow prices.

The dual value for a constraint is nonzero only
when the constraint is equal to its bound. This is
called a binding constraint, and its value was driv-
en to the bound during the optimization process.
Moving the constraint left hand side’s value away
fromthe boundwill worsen the objective function’s
value; conversely, “loosening” the bound will
improve the objective. The dual value measures
the increase in the objective function’s value per
unit increase in the constraint’s bound..... In the
case of linear problems, the dual values remain
constant over a range

Notice that the change by one unit may not be
within the range, see sub-section 7.4.

Justto add to the confusion, other packages such
as GAMS report marginal’s without any informa-
tion about their range of validity. (see Listing 2)

Subtle discrepancies like this one are unfor-
tunate. There is a pounding need for consensus

on the vocabulary and structure on the output of
optimization software packages.

Using Excel LP Solver produces the output
shown in Listing 3 for the non-standard form
numerical example. (see Table 8)

The results are comparable with our hand
computation. However one must be careful in any
generalization, since this comparison is done on
a specific numerical example.

WinQSB Software produces the following
outputs for the non-standard form numerical ex-
ample. The results with all constraints in explicit
form, and then selecting the unrestricted option
are shown in Listing 4.

The sensitivity ranges are not correct. They
are differed from the results already obtained by
hand computations.

9.2 Poor Scaling and Unstable
Software Solutions

When modeling a business problem, different
conditions might require us to use parameters or
inputs having very different order of magnitudes.
For example, an LP from manufacturing industry

Listing 2. Excerpt from GAMS output for the first numerical example that is in standard form

LOWER LEVEL UPPER MARGINAL
EQU constrl 12000.0 12000.0 +INF 2.1250
EQU constr2 -INF 15000.0 15000.0 -0.750
Table 8. Non-standard form numerical example P2 summary results

Optimal Objective Allowable Allowable

Variables Name Solution Coefficient Increase Decrease
X1 2 1 M 1
X2 -2 0 0.5 M

Shadow Slack Allowable Allowable

Constraints Name Price Surplus Increase Decrease
Constraint 1: X1 + X2 >=0 -1 0 1 M
Constraint 2: 2X1 + X2 <=2 1 0 M 2
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Listing 3. Excel result with all constraint in explicit form, and then selecting the unrestricted option

Final Reduced Objective Allowable Allowable

Name Value Cost Coefficient Increase Decrease
X1 2 0 1 1E+30 1
X2 2 0 0 0.5 1E+30
Final Shadow Constraint Allowable Allowable
Name Value Price R.H. Side Increase Decrease
Constraint 3: X1 >=0 2 0 0 2 1E+30
Constraint 4: X2 <=0 2 0 0 1E+30 2
Constraint 1: X1 + X2 >=0 0 -1 0 1 1E+30
Constraint 2: 2X1 + X2 <=0 2 1 2 1E+30 2

Listing 4. WinQSB Input and Its Combined report

LP Input in Matrix Format

Variable X1 X2 Direction R.H.S.
Maximize 1 0
Constraint 1 1 1 >= 0
Constraint 2 2 1 <= 2
Constraint 3 1 0 >= 0
Constraint 4 0 1 <= 0
Lower Bound -M -M
Upper Bound M M
Variable Type X1 Unrestricted, X2 Unrestricted
Decision Variable Solution Value Unit Profit Allowable Min. Allowable Max.
Contribution c(7) c(7)
X1 2 1 0 1
X2 -2 0 -M 0
Objective Function (Max.) = 2.0
(Note: Alternate Solution Exists!!)
Constraint Shadow Price Allowable Min. RHS Allowable Max. RHS
Constraint 1 -1 -M 1
Constraint 2 1 0 M
Constraint 3 2 -M 2
Constraint 4 2 -2 M
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might include dollar amounts in millions and at
the same time might include quality based con-
ditions in the range of nanometers (one billionth
of a meter). If an LP is modeled using the such
units then the solvers such as Lindo and Excel
gives us warning about poor scaling but then also
gives some updated values. Frontline Solvers (the
developers of Excel Solvers) admit to this limita-
tion and the website reports that:

The effects of poor scaling in a large, complex
optimization model can be among the most dif-
ficult problems to identify and resolve. It can
cause Solver to return messages such as ‘Solver
could not find a feasible solution’, ‘Solver could
not improve the current solution,” or even ‘The
linearity conditions required by this LP Solver are
not satisfied,” with results that are suboptimal or
otherwise very different from your expectations.
(Frontline Solvers, 2013)

Unfortunately, Solver does not always alert the
user about any issues with the problem. The fol-
lowing example clearly is prone to scaling issues
with a very large coefficient for X, in the third
constraint. (Depending on the computer a larger or
smaller coefficient yields the issue describe here).
However, when the problem is attempted with
Solver, Solver sometimes yields an error message
as the ones described earlier, but in most cases,
it does not give any error message and reports as
optimal an infeasible solution.

Numerical Example:
Minimize X,
Subject to:

10X, -X, <0

X =1

X, = 100000

X, <0 X, <1

X, is positive integer

Solver might report as the optimal solution X
=1,X,=10, and X, = 0. This solution violates
constraint (3). The correct solution is X, = 1, X,
= 10, and X, =1. Therefore, we have numerical
instability caused by too large values.

Excel recommends that to avoid such occur-
rences a model must only be allowed to vary by
an order of magnitude of 3 (i.e. 1 to 1000). Excel
allows the use of “Use Automatic Scaling” feature
for automatically rescaling the values butitcannot
rescale the problems “intelligently”. Hence if the
automatic rescaling feature is used the outcomes
could unknowingly become worse rather than
better. Automatic rescaling can also slowly down
the optimization process significantly (Winston
and Albright, 2011). Similar limitations exist for
Lindo also (Martin 1999) and may exist for several
other solvers as well. However these limitations
are largely and conveniently ignored.

One of the possible reasons for such ignorance
could be due to the high expectations and the prom-
ise of convenience offered by LPs. Using LPs, a
manager can get an optimal solution even when the
problem includes a huge variety of factors (inputs
and constraints) which could be coming from a
wide variety of domains. For large and complex
LPs, the managers and the coders would want to
reduce the complexity associated with LPs and
would prefer not to change the units for the sake of
convenience. For example when developing LPs
for manufacturing sector a manager (and even the
coders) might prefer to use dollars values directly
in the model instead of converting them to mil-
lions (which reduces the order of magnitude by
six but then increase the chance of getting optimal
dollar values in decimals) and use it with values
of quality tolerance in a fraction of millimeter.
Such instances are common and widespread. The
authors lament that majority of books violates the
ideal requirement of order of magnitude in the
discussions and leaves the mangers very much
vulnerable to being unknowingly dependent on
sub-optimal results.
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The best approach recommended to deal with
this situation is to use consistent scaling at the
time of modeling. Managers should be aware of
thisissue and use consistent units for products and
constraints. Forexample, if working with multiple
monetary constraints they all should be scale in
hundreds or thousands. Alternative if working
with multiple products similar units should be
used for all the products.

10. MAINTAINING A PRIMAL
DEGENERATE OPTIMAL
VERTEX OPTIMAL

Almost all research work in LP literature starts
with an assumption of a non-degenerate primal/
dual LP. Degeneracy is the case of having multiple
vertices at the same point.

The necessary condition for the existence of LP
degeneracy: If at optimal point the number of bind-
ing constraints is more than n (i.e., the dimension
of the problem) then the solution to an LP might
be degenerate.

Resolution: Double-check the coefficients of all
constraints including the RHS values. There could
have been rounding error.

10.1 False Degenerate
Optimal Solution

Consider the following n=2 dimensional LP
problem:

Numerical Example P2:
Maximize X,
Subject to:

X +X,=5

X, +X, <1

X, >20,X,>0
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This problem has a unique, non-degenerate opti-
mal solution at (X, = 2, X, = 3). However, if one
rewrites the equality constraint in the form of two
inequalities, the equivalent problem is:

Maximize X2
Subject to:
X, +X,<5
X, +X,>5
X +X, <1
X, 20,X,>20

Clearly, the optimal solution (2, 3) now makes
three constraints binding. Three is more than the
dimension n=2 of this problem; therefore one
may incorrectly conclude that this solution is a
degenerate optimal solution. This simple numeri-
cal example serves the purpose of the necessary
(but not a sufficient) condition for a degenerate
optimal solution.

Anoccurrence of degeneracy can have a signifi-
cant impact on the shadow prices and may cause
oddities in the output provided by LP solvers.
Moreover, the usual sensitivity analyses do not
provide complete information in the degenerate
case; that is, the information one obtains from
most LP packagesis a subset of the true sensitivity
intervals. There are more effective approaches to
cope with this problem; however, they are com-
putationally much more involved, Lin (2010).
Almost all software packages do not alert the user
that the problem is degenerate.

Numerical Example P4:
Maximize C(X) = X + X,
Subject to X, <1

X, <1

X, +X,<2

The optimal solution is X, = 1, and X, = 1, at
which all three constraints are binding. We are
interested in finding out how far the RHS of
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binding constraints can change while maintain-
ing the degenerate optimal solution. Because of
degeneracy, there is dependency among these
constraints at the binding position, that is:

X =1
X, =1
X +X,=2

Inorder to maintain the degenerate vertex while
changing the RHS values, the RHS proportionately
must be changed to the coefficients of the decision
variables. The resulting parametric RHS system
of equations is as follows:

X1=1+1r1+0r2
X2=1+0r1+1r2
X1+X2=2+1r1+11r2

The parameters on the RHS allow for the de-
generate vertex to move maintaining its structure.
Since there are two decision variables, any two
of the parametric equations can be used to find
the parametric degenerate optimal solution. For
example, the first two equations provide (X, = 1
+r,, X, =1+r,), which clearly satisfies the third
one. As mentioned earlier, for larger problems
one may use JavaScript software: http://home.
ubalt.edu/ntsbarsh/Business-stat/otherapplets/
PaRHSSyEqu.htm

The perturbed optimal value is C(X) = X +
X,=2+r, +r, Inorder for this vertex to remain
optimal, it must satisfy all other constraints that
have not been used. For this numerical example,
the non-negativity conditions are the remaining
constraints; therefore, we obtain the following
conditions for r, and r,:

{randr,lr >-1,1,>-1}.

Notice that while the changes satisfy these
conditions the degenerate solution remain degen-
erate, for any change outside of this set ensures
the manager that the solution is not any longer

degenerate therefore the sensitivity and shadow
prices are valid.

11. MAINTAINING THE MULTIPLE
OPTIMAL VERTICES OPTIMAL

The necessary condition for the existence of
LP multiple solutions: If in the “software final
report” the total number of zeros in the Reduced
Cost, together withnumber of zeros in the Shadow
Price columns, exceeds the number of constraints,
then youmight have multiple solutions. Sensitivity
analysis is not applicable. That is, the sensitiv-
ity analysis based on one optimal solution may
not be valid for the others, Lin (2010). Software
package like LINDO alert the user if a problem
has multiple solutions, while others like Excel LP
Solver do not.

Resolution: Checkthe coefficients in the objective
function and the coefficients of the constraints.
There could have been rounding error.

Numerical Example P5:
Consider the following LP:

Maximize C(X) = 6X, + 4X,
Subject to X, +2X, < 16
3X,+2X,<24
X, 20
X,>0

This LP has two optimal vertices; namely, (X,
=38, X, =0) and (X, =4, X, = 6). Notice that
the existence of two solutions means we have in-
numerable optimal solutions. For example, for the
above problem, for all parameter a, 0 <a <1, the
following convex combinations are also optimal:

X, =8a+4(l-a)=4+4a,
X,=0a+6(1-a) =6 - 6a.
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The Dual LP is:

Minimize 16U, + 24U,
Subjectto U, +3U, > 6
20, +20,>4
U >0
U,>0

This dual LP has a degenerate optimal solu-
tion (U, = 0, U, = 2). In order to maintain the
degenerate vertex while changing the RHS, the
RHS values must be changed in proportion to
the coefficients of the decision variables. The
parametric RHS system of equations is:

U1+3U2=6+1c1+3c2
2U1+2U2:4+201+2c2
U1=0+lc1

As before, any two of the parametric equa-
tions can be used to find the parametric degener-
ate optimal solution. For example, the first two
equations provide U =c¢, and U, =2 + ¢, which
clearly satisfies the third equation. For this vertex
to remain optimal, it must satisfy all other con-
straints that have not been used. For this example,
the non-negativity condition, U, > 0, is the only
remaining constraint. Therefore, we obtain the
following conditions for ¢, and c:

{c.c,lc,>-2}.

Moreover, the perturbed cost coefficients (6
+ ¢ )X, + (4 + ¢,)X, must be proportional to its
parallel constraint 3X | +2X, <24,i.e.,(6+c )/3
= (4 + ¢,)/2. This simplifies to 2¢ = 3c,. Putting
together all these conditions, we obtain the largest
sensitivity set as follows:

{c.c,lc,>-2,2¢ =3c,}.
Notice that, while the changes satisfy these

conditions, the problem has multiple solutions;
for any change outside of this set ensures the
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manager that the problem does not any longer
have multiple solutions therefore the sensitivity
and shadow prices are valid.

12. THE MORE-FOR-LESS OR
LESS-FOR-MORE SITUATIONS

A curious property called the more-for-less (MFL)
or less-for-more (LFM) phenomenon is associated
with some linear programs (LP). The existing
literature has demonstrated the practicality and
value of identifying cases where the paradoxical
situation exists, Arsham (1996). For example,
consider the following production LP.

Numerical Example P6

Maximize C(X) = X| + 3X, + 2X,
Subject to X, +2X, + X, =4

3X, +2X,=9

X 20,X,20,X,>20

The optimal solution for this LP occurs at vertex
X, =1,X,=0, X, =3, with the maximum value
of objective function as $7.

Note that, if the RHS of second constraint is
increased to 12, then the new optimal solution gives
the optimal value of C(X) = $4; i.e., a decrease in
profit while working more hours. This situation
arises frequently in LP models and is known as
the “more-for-less” paradox where further analysis
could bring significant reduction in costs. We ap-
ply the primal sensitivity algorithm to solve the
RHS perturbed equation constraints with X, =0,

X +X, =4+,
3X,+2X, =9+,

The parametric solution is X, =1 —2r, +r,,
X, =0, and X, =3 + 3r, - r,, with the optimal
parametric solution as C(X) =7 + 4r, - r,. Plug-
ging the parametric solution into other non-binding
constraints, we obtain
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X1=1—2rl+r220
X3=3+3r1—r220

Looking at the parametric optimal function, no-
tice that the shadow price of the second constraint,
coefficient of r,, is negative. To find out the best
number of hours, one must work to maximize the
profit function 7 + 4r, - r,, by setting r, = 0 and
finding the largest negative value forr,. Therefore,
the constraints reduce to:

X, =1+4+r,20
X,=3-1,>0.

The largest negative valueisr, =-1. This gives
the optimal solution of (X, =0, X, =0, X, =4)
with the optimal value of C(X) = 8. Therefore,
the optimal strategy is to work 8 hours instead
of 9 hours.

Proposition 3: A necessary and sufficient condi-
tion for the existence of a less-for-more (more-for-
less) solution to a maximization (minimization)
problem is the existence of an equality constraint
with a negative shadow price.

Theorem 1: We are in LFM or MFL situation
iff at least one of r,’s in the above parametric LP
formulation is negative [positive]

13. CONCLUSION

A business environment is dynamic. A problem
solution is valid in a limited time window only
and is subject to revision in the next time win-
dow. Generally, a constraint set is less subject to
change as compared to the objective function. For
example, in production and transportation prob-
lems, the capacity constraints may remain rather
stable over a period of time. On the other hand,
profit coefficients of the objective function are
inversely related to the price, which may fluctuate,

being determined by the market conditions and
competition. The proposed method can be used
to optimize LP problems with varying objective
function. Given a system of linear equalities and/
or inequalities, the method provides all vertices
of the feasible region. By means of examples, we
have illustrated the use of the Improved Algebraic
Method to efficiently derive the slack and surplus
amounts for the resources of an LP. The parametric
representation quickly provides all dual prices to
carry out analysis for desirability of obtaining ad-
ditional resources. The parametric representation
also allows one to study variability (i.e, uncertain-
ties) of the coefficients of the objective functions
and the right-hand-side of constraints.

We provide a comprehensive managerial
coverage of linear programming post-optimality
analysis. The collections of presented tools are
easy to understand, easy to implement (for small
size problems), and provide useful information to
the manager. Therefore this collection could prove
valuable to involve the manager throughout the
decision-making process to understand therefore
being implemented.

Itis the proposed IAM approach to solve a sys-
tem of inequalities that provides a bridge between
the graphical method and the simplex method.
The simplex method is an efficient computer
implementation of algebraic methods and almost
all the LP software use it.

All the LP tools are covered within the deci-
sion variable space; no additional variables such
as slack/surplus/artificial variables or constraints
are added.

The proposed approach provides useful infor-
mation for the manager such as shadow prices and
expands the sensitivity analysis scope by proving
sensitivity regions rather than ranges that LP soft-
ware provides. Under the proposed methods, the
elaborate fundamental LP theorems fall naturally
out as by-products. Moreover, it can also be used
to fill the gap between the graphical method of
solving LP problems and the simplex method.
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