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This chapter provides a critical overview of Linear Programming (LP) from a manager’s perspective. 
The main objective is to provide managers with the essentials of LP as well as cautionary notes and 
defenses on common modeling issues and software limitations. The authors illustrate the findings by 
solving a simple LP directly on the original decision variables and constraints space without adding 
new variables or translating the model to fit a specific solution algorithm. The aims are the unification of 
diverse set of topics in their natural states in a manner that are easy to understand and providing useful 
information to the managers. The advances in computing software have brought LP tools to the desktop 
for a variety of applications to support managerial decision-making. However, it is already recognized 
that current LP tools, in ample circumstances, do not answer the managerial questions satisfactorily. 
For instance, there is a costly difference between the mathematical and managerial interpretations of 
sensitivity analysis. LP software packages provide one-change-at-a-time sensitivity results; the authors 
develop the largest sensitivity region, which allows for simultaneous dependent and/or independent 
changes, based on the optimal solution. The procedures are illustrated by numerical examples including 
LP in standard-form and LP in non standard-form.
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Linear programming (LP) has been a fundamental 
topic in the development of managerial decision-
making. The subject has its origins in the early 
work of L. B. J. Fourier (1820s) on attempting 
to solve systems of linear inequalities. However, 
the wide spread use and acceptance of LP had to 
wait until the invention of the Standard Simplex 
Method.

Since World War II, LP has been used to solve 
problems of various dimensions in almost all dis-
ciplines. The most popular solution algorithm is 
the Simplex method that is implemented by most 
LP software packages.

The Simplex algorithm can be considered as a 
sub-gradient directional method, jumping from an 
initial feasible vertex to a neighboring vertex of the 
feasible region until it arrives at an optimal vertex. 
The Simplex method requires that the model be 
expressed in a special format called “Standard 
Form”, that is, some constraints and variables 
must be transformed. Consequently, when the 
manager obtains a solution through the Simplex 
method, she/he is left with the task of interpreting 
and transforming the Simplex solution back to the 
original managerial problem. However, this may 
not be an easy task.

For instance, solving LP problems in which 
some constraints are in (≥) or (=) form with 
non-negative right-hand side (RHS) has raised 
difficulties. With that purpose, the simplex method 
requires a feasible stating solution. When such 
starting solution is not readily at-hand, alterna-
tive methods are necessary. One version of the 
Simplex method, known as the two-phase method, 
introduces an artificial objective function, which 
is the sum of artificial variables (see Arsham 
1997a, 1997b). Another version adds penalty 
terms, which are the sum of artificial variables 
with very large, positive coefficients. The latter 

approach is known as the Big-M method, (see 
Arsham 2006, 2007). On the other hand, using the 
Dual Simplex method has its own difficulties. For 
example, when some coefficients in the objective 
function are not dual feasible, one must introduce 
an artificial constraint. Handling equality (=) 
constraints by the dual simplex method is tedious 
because of the introduction of two new variables 
for each equality constraint: one extraneous slack 
variable and one surplus variable. Also, one may 
not be able to remove some equality (=) constraints 
by elimination at the outset, as this may violate 
the non-negativity condition introduced when 
constructing the “Standard Form.”

Arsham (2013) proposes a tabular interior 
boundary approach that intents to address these 
concerns and solves the original managerial LP 
model, without any need of “Standard Form”, 
artificial variables, artificial constraints, and 
Big-M. While these variants of the simplex suc-
cessfully handle an array of constraint forms, they 
impose a burden and mathematical sophistication 
on manager that make difficult the success of LP 
applications.

Koltai and Terlaky (2000) state that managerial 
questions are not answered satisfactorily with 
the mathematical interpretation of sensitivity 
analysis. Software packages provide sensitivity 
results focused on the optimality of a basis and 
not on the optimality of the values of the decision 
variables. The implementation of the misunder-
stood shadow prices and their range of validity 
may coax managers to take poor decisions with 
considerable financial losses and strategic con-
sequences. Another source of confusion is the 
similarity of terms used in operations research (i.e., 
re-search, as a process), and other related fields. 
For example, “shadow price” and “opportunity 
cost” have somewhat different meanings in the LP 



and Economics literature. The “opportunity cost” 
of an action in economics can be interpreted as 
the “shadow price” of that action on the budget.

The LP software packages provide sensitivity 
results about the optimality of a basis and not 
about the optimality of the values of the deci-
sion variables and the shadow prices that are of 
interest to the manager. In Section 6 we develop 
the largest sensitivity region based on the optimal 
vertex, and allows for simultaneous dependent/
independent changes.

Naturally, a modeler, reflecting the modeler’s deci-
sion problem, creates the LP model. On the other 
hand, the solution algorithm is designed by, for 
example, a systems analyst to solve LP problems. 
Because of the complexity of Simplex method, 
confusion could creep-in when the modeler’s 
model is developed into a tool using the software 
solution algorithm. For instance, the algorithm 
used in QM software and Management Scientists 
make all variables non-negative. This may create 
confusion as many LPs may contain negative or 

unrestricted variables. In this research work, the 
algorithm adjusts itself to the original model and 
solves it, instead of changing the model. The deci-
sion maker easily understands the result, because 
our method does not change the structure of the 
original model. For example, while using Simplex 
approach the need to transform constraints to 
standard form changes the manager’s LP model to 
something that is not his and therefore the optimal 
solution must be transferred back to the manager’s 
problem. This can confuse the managers and lead 
to costly misinterpretations. One must understand 
the differences that could creep-in when a model 
is formulated and when it is solved using a solver’s 
solution algorithm; unfortunately the current state 
of art of LP software do not differentiate and 
causes confusions.

There exists a dichotomy between the reality 
the managers have to deal with, the problems that 
they face and the type of strategic decisions they 
need to make, and the methods that modelers have 
access to solve those problems. Research and 
technology have brought great advances to the 
decision-making process. However, more ad-
vances are needed to address directly the manag-
ers’ decision problems.

Figure 1. Manager’s world vs. modeler’s world



The main issue is that most software pack-
ages make assumptions about the structure of the 
problem, constraints have a certain direction; the 
decision variables take certain sign-constraints. 
These assumptions are without loss of generality; 
however, they do have implications that modify the 
original model and complicate the interpretation 
of the solution for implementation. As a result, 
the conceptual models from the manager’s envi-
ronment have to be translated into mathematical 
models, gets translated and later into solution 
models to fit software packages. Afterwards, these 
solutions must be translated back into the real prob-
lem. This translation is often cumbersome for the 
general user. While translating decision variable 
might be doable with some effort, interpreting 
sensitivity analyses from a modified model might 
be out of reach. In that regard the mathematical 
model should represent to the conceptual model.

We devoted Sections to show how to build the 
largest sensitivity region based on the “optimal 
solution”. These sections are independent of all 
previous sections; in that one needs the optimal 
solution in any way it is obtained. This develop-
ment differs significantly from the traditional 
Simplex’s tableau approach that limits itself to the 
“Preservation of the Basis”. No one expects the 
Manager to understand and interpret the Basis cor-
rectly, but it is expected that a Manager should be 
able to understand and interpret the optimal values 
of his decision variables and the consequences of 
any changes to them. The Dual generated from the 
“Standard Form” does not look like the Manager’s 
dual problem of his primal model.

The Operations Research (OR) processes must 
be considered from the viewpoint of General 
Systems Theory. The authors assert that without 
a whole systems perspective OR can neither be 
understood nor applied effectively. Typically, OR 
problems can be broken down into five components 
viz: (1) the “reality” of the problem, (2) the con-
ceptual model of the problem, (3) the conversion 
of conceptual model to a mathematical model, 
(4) solution determination of the mathematical 

model, (5) managerial interpretation, and (6) 
the implementation of the solution. The authors 
believe that in most cases we have under-utilized 
our knowledge (study) and limited the application 
of the OR process. There have been extremely few 
studies and applications of OR that satisfies the 
systems point of view, Arsham (2012).

The remainder of this chapter is organized 
in thirteen sections. Almost every section can 
stand by itself, independent of previous sections. 
Section 2 introduces linear programming models 
from model builders and decision makers. Some 
oddities are included. Section 3 describes the de-
cision maker’s environment explicitly in order to 
enable them to understand the decision problem. 
Section 4 explores the feasible region by using 
algebra that is understandable by the decision 
maker. The algebraic approach to solve linear 
programs is given in Section 5, which includes 
computation of slack and surplus variables. The 
methodology solves LP model in an “as is” state, 
without any need of “Standard form”, artificial 
variables, artificial constraints, the Big-M, and 
slack/surplus. Section 6 constructs the largest 
sensitivity region for the right hand side of the 
constraints based on the optimal solution. The 
shadow prices are byproducts of the sensitivity 
analysis. The dual problem formulation is included 
in Section 7, which is general and easy to apply. 
Section 8 considers the general sensitivity region 
for the cost coefficients of the objective function.

Throughout this chapter we have used LPs of 
two dimensions to save space but this method can 
be extended to higher dimensions. Even for two 
dimension problems we do not use the graphical 
method because it is limited to two-dimensional 
problems. Another reason to avoid graphical 
methods is that in some textbooks the graphical 
methods for finding the cost sensitivity range, and 
interpretation of the shadow prices are misleading. 
We use the algebraic approach throughout this 
chapter to overcome these limitations. The solu-
tion to a non-standard form problem is outlined 
in Section 9. Software implementation and their 



limitations are examined in Section 10. The sensi-
tivity analysis of the degenerate optimal vertex to 
remain optimal is developed in Section 11. Section 
12 does sensitivity analysis of multiple optimal 
solutions. The existence of a curious property; 
known as More-For-Less, or Less-For-More is 
covered in Section 13. Concluding remarks are 
summarized in Section 14.

In general terms, a linear programming model is a 
mathematical approach for determining the set of 
decisions necessary to achieve the best outcome 
given a set of resource limitations and requirements 
represented as a system of linear equations. In 
business, these can be the outsourcing conditions 
and quantities to attain the lowest possible total 
cost, or the production plan to get the maximum 
profit, or the marketing mix to reach the highest 
market penetration.

We define the LP model in the most general way.

Problem P:
Max (or Min) CX
Subject to AX ≤ a,  

BX ≥ b,   
DX = d,   
Xi ≥ 0, i = 1,..., j 
Xi ≤ 0, i = j+1,…, k 
Xi unrestricted in sign, i = k+1,…, n

where matrices A, B, and D have p, q, and r rows, 
respectively with n columns and vectors c, a, b, and 
d have appropriate dimensions. Therefore, there 
are m = (p + q + r + k) constraints and n decision 
variables. It is assumed that m ≥ n. Note that the 
main constraints have been separated into three 
subgroups. Without loss of generality, we assume 
that all RHS elements, a, b, and d are non-negative. 

We do not deal with trivial cases, such as where 
A = B = D = 0 (no constraints), or a = b = d = 
0 (all boundaries pass through the origin point), 
or having LP with a single point feasible region. 
We assume the LP has a no redundant constraints.

At the modeling stage potential pitfalls exist 
which affect any LP application; therefore, the 
decision-maker and the modeler should be cog-
nizant of modeling phase of LP, Arsham (2008). 
Thus, potential problems exist which affect any 
linear programming application. Optimal solution 
may be infeasible or unbounded, or there may be 
multiple solutions. Degeneracy may also occur. 
Figure 2 presents a classification of LP for model-
ing validation process:

Associated with each (primal) LP problem there 
is a companion problem called its dual problem. 
Table 1 is a classification of the decision vari-
able constraints is useful and easy to remember 
in construction of the dual.

• If the primal is a maximization problem, 
then its dual is a minimization problem 
(and vice versa).

• For each constraint there is a dual decision 
variable (and vice versa).

• Use the variable type of one problem to find 
the constraint type of the other problem.

• Use the constraint type of one problem to 
find the variable type of the other problem.

• The RHS elements of one problem become 
the objective function coefficients of the 
other problem (and vice versa).



• The matrix coefficients of the constraints 
of one problem are the transpose of the ma-
trix coefficients of the constraints for the 
other problem. That is, rows of the matrix 
become columns and vice versa.

One may use duality in a wide variety of applica-
tions including:

• It may be more efficient to solve the dual 
LP problem than the primal Problem.

• The dual solution provides important eco-
nomical interpretation such as shadow 
prices.

• If a constraint in the primal is non-binding, 
i.e., the LHS value is not equal to the RHS 
value, then the associated variable in the 
other problem is zero.

Table 1. A One-to-one correspondence between the primal and the dual LP problems. 

The Dual Problem Construction
Objective: Max (e.g. Profit)
Constraint types:

Objective: Min (e.g. Cost)
Constraint types:

≤ a Sensible constraint ≥ a Sensible constraint
= a Restricted constraint = a Restricted constraint.
≥ an Unusual constraint ≤ an Unusual constraint.

Variables types:
≥ 0 a Sensible condition
unrestricted in sign
≤ 0 an Unusual condition

Figure 2. A classification of LP for modeling validation and sensitivity analysis



• If a decision variable in the primal problem 
is not zero, then the associated constraint 
in the dual problem is binding.

• To obtain the sensitivity range of the RHS 
of primal problem from the sensitivity 
range of the cost coefficient in the other 
problem (and vice versa).

Table 2 implies some possible combinations 
of primal and dual problems.

Most LP software solvers have difficulties in 
recognizing the last two cases in the above table 
namely multiple optimal solutions and degenerate 
optimal solution. Most LP software do not alert 
the user about them yet produce sensitivity ranges 
that are not valid. One must make ensure that the 
solution is unique, and non-degenerate before 
analyzing and applying the sensitivity ranges.

Developing LP models with oddities can assist 
in the process of ensuring that the formulation is 
correct. However, almost all LP software solvers 
have difficulties in recognizing these dark sides 
of LP and/or giving any suggestions as remedies.

If the shadow prices of the primal problem do 
not satisfy the dual constraint, then the primal 
problem is unbounded.

An unbound optimal solution means the con-
straints do not limit the optimal solution and the 
feasible region is also unbounded, it effectively 
extends to infinity.

In real life, this is not possible. Check the objective 
function. Possibly, the problem is a minimization 
problem and maximization was selected instead. 
Check the formulation of the constraints. Possibly, 
one or more constraints are missing. Check also the 
constraints for any incorrect specification in the 
direction of the inequality, and numerical errors.

There is no feasible solution, i.e., there is no 
feasible vertex. The solution algorithm produces 
no solution.

Table 2. Possible combinations of primal and dual properties 

Primal Problem
Condition 

Implies Dual Problem
Feasible; bounded objective ↔ Feasible; bounded objective

Feasible; unbounded objective → Infeasible
Infeasible ← Feasible; unbounded objective

Multiple solutions ↔ Degenerate solution
Degenerate solution ↔ Multiple solutions



An infeasible solution means the constraints are 
too limiting and have left no feasible region. That 
is, no solution satisfies all the constraints of the 
problem.

Check the constraints for any incorrect specifica-
tion in the direction of inequality constraints, and 
numerical errors. If no error exists, then there are 
conflicts of interests.

These and other odd situations, including 
multiple solutions and in particular degeneracy, 
are rare (except in network models since they 
often have a redundant constraint, causing de-
generacy), and often result at the modeling stage. 
The decision-maker sets the objective function, 
while the constraints come from the decision-
maker environment, consequently, it is rare to get 
multiple solutions, i.e. the objective function has 
the coefficient proportional to those of at least 
one binding constraint. In these cases, rounding 
in the coefficient(s) could be the source of the 
multiple solutions.

In the process of conceptualizing and building a 
mathematical model of the business reality, it is 
important to identify the most important elements 
and categorize them into performance measures, 
uncontrollable inputs, parameters, controllable 
inputs and strategies.

Understanding the problem requires criteria for 
grouping entities of the decision model in the same 
category. Performance measure (or indicators), 
that is, measuring business performance, should 
be at the top of the decision-making process and 
should align with the management goals. The 
development of effective performance measures 
is increasingly important for many organizations, 

even though it remains challenging for organiza-
tions in the public sector or not-for-profit orga-
nizations, because the performance measures are 
the drivers for the optimal strategy and determine 
the direction for the organization.

The decision-making environment elements 
are further discussed in the context of the follow-
ing numerical example.

Consider the following mixed products LP prob-
lem of a price-taker small manufacturer producing 
table and chairs. His objective is to maximize 
net profit:

Maximize P(X) = 5X1 + 3X2
Subject to 2X1 + X2 ≤ 40, 

 X1 + 2X2 ≤ 50, 
 X1 ≥ 0, X2 ≥ 0.

Figure 3 analyzes and depicts his decision 
environment.

The performance measure is important for the 
decision maker as a measuring tool for success 
and identifying the decision problem. Other ele-
ments of the decision-maker’s environment are 
classified as follows:

• Uncontrollable Inputs: These come from 
the decision maker’s external environment. 
Uncontrollable inputs often create the 
problem and constrain the actions.

• Parameters: Parameters are the constant 
elements that do not change during the 
time horizon of the decision review. These 
are the factors partially defining the prob-
lem. Strategic decisions usually have lon-
ger time horizons than both the tactical 
and the operational decisions, at different 
levels of organization.

• Controllable Inputs: The collection of 
all possible courses of action the decision 
maker might take.



• Interactions among these Components: 
These are logical, mathematical functions 
representing the cause-and-effect rela-
tionships among inputs, parameters, and 
outcomes.

There are some constraints that are made up 
of all the parameters. Therefore, they do not need 
to be treated separately.

• Actions: Action is the ultimate decision 
and is the best course of strategy to achieve 
the desirable outcome. Decision-making 
involves the selection of a course of action 
in the pursuit of one’s objective.

• Controlling the Problem: Few prob-
lems in life, once solved, stay that way. 
Changing conditions tend to create new 
problems from the problems that were pre-
viously solved. Their solutions create new 

problems, adding new uncontrollable in-
puts, and /or new options. One must iden-
tify and anticipate these new problems and 
recognize the cycle of such problems.

The widely used Simplex solution to an LP prob-
lem is strictly based on the theory and solution 
of a system of linear inequalities (Arsham 2009). 
The list of constraints in an LP model constitutes 
a system of linear inequalities that define the 
feasible region of the problem. The basic solu-
tions to a linear program are the solutions to the 
systems of equations consisting of constraints at 
binding positions. Not all basic solutions satisfy 
all the constraints. Only those that do meet all the 
constraint restrictions are called the basic feasible 

Figure 3. Decision-maker’s environment in a mixed product LP problem



solutions. The basic feasible solutions correspond 
precisely to the vertices of the feasible region.

For illustration purposes we are going to follow 
the Improved Algebraic Method (IAM) to solve 
the system of linear inequalities. This method is 
simple to understand and does not require the for-
mulation of an auxiliary LP problem like it might 
require the Simplex method. This methodology 
can also be extended to solve systems of linear 
inequalities of higher dimensions.

We are interested in finding the vertices of 
the feasible region of Problem P, expressed as a 
system of linear equalities and inequalities.

Feasible Region S: 
AX ≤ a,  
BX > b, 
 DX = d,

where some Xi > 0, i = 1,..., j, Xi < 0, i = j+1,…, 
k and Xi unrestricted in sign, i = k+1,…, n. Ma-
trices A, B, and D as well as vectors a, b, and d 
have appropriate dimensions.

Therefore, the optimization problem can be 
expressed as:

Problem P:
Max (or min) C(X)
Subject to: X ∈ S

Step 1. Convert all inequalities into equalities 
including any variable restricted in sign.

Step 2. Calculate the difference between the 
number of variables (n) and the number of 
equations (m).

Step 3. Determine the solution to all square sys-
tems of equations, i.e., basic solutions. The 
maximum number of systems of equations 
to be solved is: m!/[n!(m-n)!].

Step 4. Check feasibility of each basic solution 
obtained in Step 3 by using all the constraints 
and identify the basic feasible solutions 
(BFS).

The coordinates of vertices are the BFSs of the 
systems of equations obtained by setting some 
of the constraints at binding (i.e., equality) posi-
tion. For a bounded feasible region, the number 
of vertices is at most m!/[n!(m-n)!] where m is 
the number of constraints and n is the number of 
variables. Therefore, a BS is obtained by taking 
any set of n equations then solving them, simul-
taneously. By plugging this BS in the constraints 
of other equations, one can check for feasibility 
of the BS. If it is feasible, then this solution is 
a BFS that provides the coordinates of a corner 
point of the feasible region.

We provide a feasible region problem; FR1 to 
illustrates the Improved Algebraic Method steps:

Feasible Region FR1:
12X1 + 10X2 ≥ 12000  (1)
10X1 + 15X2 ≤ 15000  (2)
X1 ≥ 0 (3)
X2 ≥ 0 (4)

Because of constraints 2, 3 and 4, are enclos-
ing feasible region, therefore feasible region is 
bounded with countable vertices. There will be 
4 equations and 2 variables yielding 6 possible 
combinations. The IAM provides six basic solu-
tions for the system of linear inequalities as shown 
in Table 3.

There are 3 basic feasible solutions to the 
system of inequalities namely:

A= (X1, X2) =(1000, 0),
B = (X1, X2) = (1500,0),
C = (X1, X2) =(375, 750).



Using the scalar parameters λ1, λ2, and λ3 for the 
3 vertices, respectively, we obtain the following 
convex combination of vertices which is a paramet-
ric representation of the bounded feasible region:

X1 = 1000λ1 + 1500λ2 + 375λ3 

X2 = 750λ3 

for all parameters λ1, λ2, λ3 such that each is 
non-negative, and λ1+ λ2 + λ3 = 1.

Note that the above representation is valid if 
the feasible region is bounded. For example the 
feasible region X1 + X2 ≤ 1, X1 ≥1, X2 ≥0, is 
unbounded contains one vertex only.

Moreover if feasible region is bounded it must 
have more than one vertex. The feasible region 
of X1 + X2 = 1, X1 - X2 = 1, X1 ≥ 0, X2 ≥ 0, has 
feasible region with single point (1, 0). In the case 
of unbounded feasible region one must includes 
the needed rays, for numerical examples, see 
Arsham (2008).

The main purpose of presenting the IAM is for 
the manager to understand, use, gets useful infor-
mation, the major software use a refine version 
of IAM. Therefore, for large problems based on 

software become apparent. There are special cases 
when using IAM:

• If there is no feasible vertex, then the prob-
lem is infeasible, that is feasible region is 
empty.

• If the shadow price of the primal does not 
satisfy the constraints of the dual problem 
then the problem is unbounded.

• If there are two distinct optimal vertices, 
then the problem has multiple solutions. In 
this case the dual has degenerate optimal 
solution. The reverse is also true.

Notice that these results are not applicable to 
trivial cases, such as a problem with no vertices, 
such as: Maximize X1 + X2, subject to: X1+X2 
= 1, all variable are unrestricted in sign. For 
more oddities in LP modeling, visit the website: 
The Tools for Modeling Validation Process: The 
Dark Side of LP http://home.ubalt.edu/ntsbarsh/
opre640A/partv.htm

Consider the following linear program P1:

Problem P1:
Minimize C(X) = 18X1 + 10X2
Subject to: 12X1 + 10X2 ≥ 12000  

10X1 + 15X2 ≤ 15000  
X1, X2 ≥ 0

Table 3. The basic solutions of the numerical example FR1 

Binding Constraints Solution (X1, X2) Feasible? Why?
1 and 2 (375, 750) Yes, all satisfied
1 and 3 (0, 1200) No, constraint 2 is not satisfied
1 and 4 (1000, 0) Yes, all satisfied
2 and 3 (0, 1000) No, constraint 1 is not satisfied
2 and 4 (1500, 0) Yes, all satisfied
3 and 4 (0, 0) No, constraint 1 is not satisfied



Substituting the parametric version of the fea-
sible region into the objective function, we obtain:

C(λ) = 18X1 + 10X2 = 18000λ1 + 27000λ2 + 
14250λ3

The optimal solution occurs when λ3 = 1 and 
all other λi’s are set to 0, with a minimum value 
of 14250. The optimal solution is (X1 = 375, X2 
= 750), the vertex corresponding to λ3.

Let the terms with the largest (smallest) coeffi-
cients in C(λ) be denoted by λL and λS respectively. 
Then the following proposition holds:

Proposition 1: The maximum (minimum) solution 
of an LP with a bounded feasible region corre-
spond to the maximization (minimization) of the 
parametric objective function C(λ). Moreover, 
since C(λ) is a linear convex combination, the 
optimal value of C(λ) is obtained by setting λL or 
λS equal to 1 and all other λi = 0. 

Proof: Proof follows from applying the IAM 
to

Max (Min) C(λ)
Subject to: ∑ λi =1, and all λi ≥ 0.

The optimal solution can be found by enu-
merating all basic feasible solutions by applying 
the IAM method to this optimization problem. 
Since this feasible region is bounded it has a fi-
nite number of vertices, then this result suggests 
that optimum is associated with the BFS yielding 
the largest or smallest objective value, assuming 
the problem is of maximization or minimization 
type, respectively. The maximum and minimum 
vertex of an LP correspond to λL = 1 and λS = 1, 
respectively. As a result, since C(λ) is a (linear) 
convex combination of its coefficients, the optimal 
solution of C(λ) is obtained by setting λL or λS 
equal to 1 and all other λi = 0.

As an application of this proposition, we have 
the following useful result.

Fundamental Linear Programming Result: if 
the optimal solution to an LP is bounded, then it 
occurs at one of vertices of the feasible region.

From the above proposition, one might found 
the tight bound for the objective function, if it 
exists. For our numerical example we have the 
following tight bound:

14250 ≤ 18X1 + 10X2 ≤ 27000

Given that the right-hand-side (RHS) of a con-
straint is non-negative, the slack is the leftover 
amount of a resource (≤) constraint, and surplus 
is the access over a requirement (≥) constraint. 
These quantities represent the absolute values of 
the difference between the RHS value and the 
LHS (Left Hand Side) evaluated at an optimal 
point. Having obtained an optimal solution, 
one can compute the slack and surplus for each 
constraint at optimality. Equality constraints are 
always binding with zero slack/surplus.

Since this numerical example is a two-di-
mensional LP, one expects (at least) to have two 
binding constraints. The binding constraints at 
optimality are equations 1 and 2:

12X1 + 10X2 = 12000
10X1 + 15X2 = 15000

With surplus and slack value of zero, respec-
tively, i.e., S1 = 0 and S2 = 0 which are the “Reduce 
Cost” of the dual problem.

Suppose we obtained the optimal solution by 
any means, such as graphical (for two dimen-



sional problems), simplex, dual simplex or interior 
methods. The following two sections construct 
the largest sensitivity regions based on the given 
optimal solution.

We develop a novel approach to post-optimality 
analysis for general LP problems given a unique 
non-degenerate optimal solution this approach 
provides a simple framework for the analysis of 
any single or simultaneous change of right hand 
side (RHS) or cost coefficients by solving the 
nominal LP problem with perturbed RHS terms. 
Assume that the LP is of size (mxn), i.e., it has 
n decision variables and m constraints including 
the non-negativity conditions (if any).

Step 1: Identify the n constraints that are binding 
at optimal solution. If there is more than 
n binding constraints, then the problem is 
degenerate. The degenerate case are dealt 
with in Section 10.

Step 2: Construct the parametric RHS of the 
constraints, excluding the non-negativity 
conditions.

Step 3: Solve the parametric system of equations 
consisting of the binding constraints. This 
provides the parametric optimal solution.

Step 4: Construct the simultaneous sensitivity 
analysis by plugging-in the solution obtained 
in Step 3, in all other remaining parametric 
constraints, including the non-negativity 
conditions (if any).

Step 5: Plug in the parametric optimal solution 
into the objective function. The coefficient 
for each parameter is the shadow price for 
that binding constraint. By definition, the 
shadow price for a non-binding constraint 
is always zero.

Following the above steps for our numerical 
example, one must first solve the following RHS 
parametric system of equations. By setting all 
inequalities in binding positions and solving the 

system of equations, we get the following para-
metric solution:

12X1 + 10X2 = 12000 + r1
10X1 + 15X2 = 15000 + r2

Solving this parametric system of equation for 
X1 and X2, we have:

X1 = 375 + 3/16r1 -1/8r2
X2 = 750 -1/8r1 + 3/20r2

The solution can be verified by substitution. For 
the higher dimension LP, the parametric solution 
can be obtained by using the JavaScript:

http://www.mirrorservice.org/sites/home.ub-
alt.edu/ntsbarsh/Business-stat/otherapplets/
PaRHSSyEqu.htm

For large-scale problems one may use symbolic 
software such as Maple, Matlab, or Mathematica.

The parametric optimal solution shows the 
impact of changes on the RHS on the optimal 
decision variables. For example, if the RHS of 
constraint 1 increases the quantity of X1 will in-
crease and X2 decreases. This is often a concept 
misunderstood or overlooked by managers.

Plugging the parametric solution into objective 
function, we have:

18X1 + 10X2 = 14250 + 17/8r1 - 3/4r2

The shadow prices are the coefficients of the 
parametric optimal function, i.e., U1 = 17/8 and 
U2 = -3/4, for the RHS of constraints 1 and 2, 
respectively. They are the rate of change in opti-
mal value with respect to changes in the RHS of 
each constraint.



Notice that the parametric objective function 
14250 + 17/8r1 – 3/4r2 is valid when the paramet-
ric solution satisfies all other (i.e., non-binding) 
constraints. In the current numerical example, the 
other constraints are:

X1 ≥ 0 and X2 ≥ 0.

These produce the following conditions:

375 +3/16r1 – 1/8r2 ≥ 0, and 750 - 1/8r1 + 3/20r2 
≥ 0.

Notice that this is the largest sensitivity region 
for the RHS of the binding constraints that allows 
for simultaneous, dependent/independent changes. 
This convex region is non-empty since it always 
contains the origin (r1= 0, r2 = 0), with a vertex at 
(r1= -12000, r2 = -15000) where both right-hand 
sides binding constraints.

Arsham (1990) gives detail treatments of the 
most popular sensitivity analysis, including the 
100% rule, and the tolerance analysis.

The above set of inequality sensitivity region 
can be used to find the ordinary sensitivity range 
(one change-at a time) for the RHS values of the 
constraints. The range for the RHS of the first 
constraint (RHS1) can be obtained by setting r2 = 0 
in the inequalities set (2). This provides r1 ≤ 6000 
and r1 ≥ -2000. Therefore, the allowable increase 
and decrease in the original value 12000 for RHS1 
are 6000 and 2000, respectively, i.e., the current 
set of shadow prices remain valid as long as:

10000 ≤ RHS1 ≤ 18000 and RHS2 = 15000.

Similarly, the range for the RHS of the second 
constraint (RHS2) can be obtained by setting r1 
= 0 in the inequality set (2). This implies that r2 
≤ 3000 and r2 ≥ -5000. Therefore the allowable 
increase and decrease in the original value 15000 
for RHS2 are 3000 and 5000, respectively, i.e., the 
current set of shadow prices remain valid as long as:

RHS1 = 12000 and 10000 ≤ RHS2 ≤ 18000.

In the numerical example P1, the non-binding con-
straints are the non-negativity conditions which are 
not subject to sensitivity analysis. Consequently, 
for illustration purposes let us pretend “as if” there 
is a non-binding constraint X1 + 100X2 ≥ 20000. 
To find the sensitivity range (one-change-at-a-
time), construct the parametric form and plug in 
the optimal solution. We get

X1 + 100X2 ≥ 20000 + r3
375 + 100 (750) = 75375 ≥ 20000 + r3
r3 ≤ 55375

The amount of increase is 55375 and decreas-
ing amount is unlimited; i.e., (RHS3 ≤ 75375).

The following proposition formalizes the shift-
ing of parametric non-binding constraints.

Proposition 2: For any given point Xo = (X1
o, 

X2
o, ......., Xn o) the parameter r value for any re-

source/production constraint is proportional to 
the ordinary distance between the point Xo and 
the hyper-plane of the constraint.

Proof: Proof follows from the fact that the 
distance from point Xo = (X1

o, X2
o, ......., Xn o) to 

any non-binding constraint, i.e.

a1 X1
o + a2 X2

o +.....+ an Xn o = b + r

is



Absolute [a1 X1
o + a2 X2

o +.....+ an Xn o - b - r] / 
(a1

2 + a2
2 +.....+ an

2)1/2

This reduces to:

Absolute r / (a1
2 + a2

2 +.....+ an
2)1/2.

Therefore the parameter r value is proportional 
to the distance with a constant proportionality 1 
/ (a1

2 + a2
2 +.....+ an

2)1/2. This is independent of 
point Xo. In the above example, Xo is the optimal 
vertex. This completes the proof.

To study the directional changes in the optimal 
value with respect to changes in the RHS (with 
no redundant constraints present, and all RHS ≥ 
0), we distinguish the following two cases:

For ≤ constraint: The change is in the same 
direction. That is, increasing the value of 
RHS does not decrease the optimal value. 
It increases or remains the same depending 
on whether the constraint is a binding or 
non-binding constraint.

For ≥ constraint: The change is in the reverse 
direction. That is, increasing the value of 
RHS does not increase the optimal value. 
It decreases or remains the same depending 
on whether the constraint is a binding or 
non-binding constraint.

For = constraint: The change could be in either 
direction (see the More-for-less section).

For ≥ type constraint: The change is in the 
reverse direction. That is, increasing the 
value of RHS does not increase the optimal 
value (rather, it decreases or has no change 

depending on whether the constraint is a 
binding or non-binding constraint).

For ≤ type constraint: The change is in the same 
direction. That is, increasing the value of 
RHS does not decrease the optimal value 
(rather, increases or has no change depend-
ing on whether the constraint is a binding 
or non-binding constraint).

For = constraint: The change could be in either 
direction (see the More-for-less section).

Knowing the unique optimal solution for the 
dual problem by using any LP solver, one may 
construct the simultaneous sensitivity analysis 
for all coefficients of the objective function of the 
primal problem as follows. Assume that the dual 
problem has n decision variables and m constraints, 
including the non-negativity conditions (if any).

Step 0: Construct and solve the dual problem.
Step 1: Identify the n constraints that are binding 

at optimal solution (that is, at the shadow 
prices of the primal problem). If there are 
more than n constraints binding, then the 
primal problem may have multiple solutions.

Step 2: Construct the parametric RHS of the 
constraints, excluding the non-negativity 
conditions.

Step 3: Solve the parametric system of equations 
consisting of the binding constraints. This 
provides the parametric optimal solution.

Step 4: Construct simultaneous sensitivity 
region by plugging in the parametric solu-



tion obtained in Step 3, in all non-binding 
constraints, including the sign conditions 
such as non-negativity conditions (if any).

We demonstrate the method in our example. The 
dual problem of our numerical example is con-
structed in Table 4.

The components of the optimal solution to the 
dual problem are the shadow prices to the original 
(primal) LP model, and vise versa. The shadow 
prices of the primal, i.e., (U2 = 17/8, U2 = -3/4), 
as calculated earlier (or one can solve it afresh 
without referring to previous section). The optimal 
value for the dual 12000(17/8) + 15000(-3/4) = 
14250 that is equal to the optimal value of the 
primal problem, as always expected. The prop-
erty that let the primal and the dual optimal values 
to be equal is known as strong duality, i.e., there 
is no gape between the dual and primal problem. 
The slacks of the first two constraints are 12(17/8) 
+ 10(-3/4) -18 = 0, 10(17/8) + 15(-3/4) -10 = 0, 
which are the “Reduce Cost” of the primal prob-
lem.

To find the ranges for the objective function 
coefficients, one may use the RHS parametric 
version of the dual problem;

The parametric presentations of the RHS of 
the binding constraints are as follows:

12U1+ 10U2 = 18 + c1
10U1 + 15U2 = 10 + c2,

Solving these parametric equations we obtain

U1 = 17/8 +3/16c1 -1/8c2
U2 = -3/4 -1/8c1 +3/20c2

Plugging this solution into objective function 
of the dual problem, we obtain the parametric 
objective function is 14250 + 375c1 + 750c2 with 
optimal value of 14250, same as for the optimal 
value of the primal problem, as expected. Again, 
this parametric optimal solution is subject to 
satisfying the unused constraints; namely, U1 ≥ 0 
and U2 ≤ 0. These produce the following largest 
sensitivity region for the objective function coef-
ficients of the primal problem P1, simultaneously:

3/16c1 -1/8c2 ≥ -17/8 and -1/8c1 +3/20c2 ≤ 3/4.

Notice that this is the largest sensitivity region 
for cost coefficients, allowing for simultaneous, 
dependent/independent changes. This convex 
region is non-empty because it contains the origin 
(c1= 0, c2=0), with a vertex at (c1= -18, c2 = -10) 
which is the negative of the both cost coefficients.

The ordinary sensitivity range (one change at 
a time) of the coefficient of first decision vari-
able X1, currently at 18, can be found by setting 
c2 = 0 in the above sensitivity region inequality 
set, yielding c1 > -6 and c1 > -34/3. Therefore the 
allowable decrease for the coefficient of X1 is 6 
with unbounded (i.e., Big-M) allowable increase. 
Similarly, the sensitivity range of the coefficient of 
second decision variable X2, currently at 10, can 
be found by setting c1 = 0 in the above sensitivity 
region inequality set, yielding c2 ≤ 5 and c2 ≤17. 
Hence, c2 ≤ 5, therefore, the allowable increase 
for the coefficient of X1 is 5 with unbounded al-
lowable decrease, (i.e., - Big-M).

Table 4.

Primal Problem P1: Classifications
Minimize C(X) = 18X1 + 10X2 Minimization Problem
Subject to: 12X1 + 10X2 > 12000 Sensible Constraint
10X1 + 15X2 < 15000 Unusual Constraint
X1 > 0 Sensible Condition

X2 > 0 Sensible Condition

The Dual Problem of Problem P1 is:
Maximize 12000U1 + 15000U2 Maximization Problem
Subject to: 12U1 + 10U2 < 18 Sensible Constraint

10U1 + 15U2 < 10 Sensible Constraint

U1 > 0 Sensible Condition
U2 < 0 Unusual Condition



It is a commonly held belief that one can com-
pute the cost sensitivity range by bracketing the 
slope of the (iso-value) objective function by the 
slopes of the two lines resulting from the binding 
constraints. This graphical slope-based method 
to compute the sensitivity ranges is described 
in popular textbooks, such as Anderson et al., 
(2007), Lawrence and Pasternack (2002), and 
Taylor (2010). However, this approach is only valid 
when the objective function and the two binding 
constraints have all slopes with the same sign, 
that is, all three functions have negative slopes 
or all three functions have positive slopes. The 
approach fails if one of the binding constraints 
has a non-negativity condition or the binding 
constraints have opposite signs. The following 
counterexample illustrating the later case.

Problem P3:
Maximize 5X1 + 3X2
Subject to: X1 + X2 ≤ 2   

X1 - X2 ≤ 0   
X1 ≥ 0, X2 ≥ 0

The optimal solution, (X1, X2) = (1, 1), is 
determined by the two main constraints. The iso-
value objective function line and first constraint 
boundary line have negative slopes, while the 
other constraint has positive slope. Bracketing the 
objective function slope between the slopes of the 
two constraints gives -1 ≤ - C1/C2 ≤ 1, which is 
an incorrect range. Notice that, not even the cur-
rent objective function slope -5/3 belongs to this 
range. The main reason is that in this problem to 
transition the slope from negative to positive it 
has to go through being very large and negative, 
then undefined, and then very large and positive, 
as opposed to go through zero. Then, the correct 
ranges are C1 ≥ 3, and -5 ≤ C2 ≤ 5, respectively, 
found by equating the ratio of coefficients from 
the objective function plus and from each of the 
constraints as follow:

(5+c1)/1= 3/1 gives c1 = -2
(5+c1)/1= 3/-1 gives c1 = -8

where c1 represents the largest possible change in 
the coefficient. A positive number represents the 
largest possible increase, while a negative number 
represents the largest possible decrease.

Therefore, since c1= -2 is more restrictive than 
c1= -8, you may decrease C1 = 5, by 2. There is 
no lower limit, thus C1 ≥ 3.

On the other hand, for C2 we obtain an upper 
and lower bound

(3+c2)/1= 5/1 gives c2 = 2
(3+ c2)/-1= 5/1 gives c2 = -8

Therefore you may decrease C2 = 3, by 8, -5 ≤ 
C2, and you may increase C2 = 3, by 2, i.e. C2 ≤ 5.

The dual solution provides important economical 
interpretation such as the marginal values of the 
RHS elements. The elements of the dual solution 

Figure 4. Problem P3 feasible region



are known as the Lagrangian multipliers because 
they provide (a tight) bound on the optimal value 
of the primal, and vise versa. For example, con-
sidering our numerical example the dual solution 
can be used to find a lower tight bound for the 
optimal value, as follow: Multiply each constraint 
by its corresponding dual solution and then add 
them up, we get:

17/8 [12X1 + 10X2 ≥ 12000]
-3/4 [10X1 + 15X2 ≤ 15000]
________________________
18X1 + 10X2 ≥ 14250

Notice that the resultant on the left side is the 
objective function of the primal problem, and this 
lower bound is a tight one, since the optimal value 
is 14250. In other words, the objective function 
lower bound is 14250, which is the optimal value 
for the minimization of the objective function 18X1 
+ 10X2. Moreover, the optimal value for both 
problems, dual and primal is always the same. This 
fact is referred to as equilibrium of economical 
systems, and efficiency in Pareto’s sense between 
the Primal and the Dual Problems. Therefore, there 
is no duality gap in linear programming.

The Shadow Price tells us how much the objective 
function will change if we change the right-hand 
side of the corresponding constraint. This is often 
called the “marginal value”, “dual prices” or “dual 
value”, for the constraint. Therefore, the shadow 
price may not be same as the “Market price, i.e., 
real price”.

For each RHS constraint, the Shadow Price 
tells us exactly how much the objective function 
will change if we change the RHS of the cor-
responding constraint within the limits given in 
the sensitivity range on the RHS’s. Therefore, for 
each RHS value, the shadow price is the rate of 

change in the optimal value caused by any allow-
able increase or decrease in the RHS.

Unfortunately, there are misconceptions re-
garding the definition of the shadow price. One 
such misinterpretation is, “In linear programming 
problems the shadow price of a constraint is the 
difference between the optimized value of the 
objective function and the value of the objective 
function, evaluated at the optional basis, when the 
right hand side (RHS) of a constraint is increased 
by one unit.” “Shadow Prices: The shadow prices 
for a Linear Programming problem are the solu-
tions to its dual. The ith shadow price is the change 
in the objective function resulting from a one-unit 
increase in the ith coordinate of b. A shadow price 
is also the amount that an investor would have to 
pay for one unit of a resource in order to buy out 
the manufacturer.”

Consider the following LP as a counterex-
ample:

Problem P3:
Maximize X2
Subject to: X1 + X2 ≤ 2  

2.5X1 + 4X2 ≤ 10  
X1 ≥ 0, X2 ≥ 0

This problem attains its optimal solution at (0, 
2) with an optimal value of 2. Suppose we wish 
to compute the shadow price of the first resource 
that is the RHS of the first constraint. Changing 
the RHS of the first constraint by increasing it by 
one unit results in:

Maximize X2
Subject to: X1 + X2 ≤ 3  

2.5X1 + 4X2 ≤ 10   
X1 ≥ 0, X2 ≥ 0

The new problem has the optimal solution (0, 
2.5) with an optimal value of 2.5.

Therefore, it seems “as-if” the shadow price for 
this resource is 2.5 - 2 = 0.5. In fact the shadow 



price for this resource is 1, which can be found 
by constructing and solving the dual problem.

The reason for this error becomes evident if we 
notice that the allowable increase to maintain the 
validity of the shadow price of the first resource 
is 0.5. The increase by 1 is beyond the allowable 
change on the first RHS value.

Now suppose we change the same RHS value 
by, increasing say, by 0.1, which is permissible 
(compared with its nominal value of 2), then the 
optimal value for the new problem is 2.1. There-
fore the shadow price is (2.1 -2) / 0.1 = 1. We 
must be careful when calculating shadow prices 
using this approach the change must be within 
allowable limits.

If you wish to compute the shadow price of a 
RHS when its sensitivity range is not available, 
you may obtain the optimal values for at least two 
perturbations. If the rate of change for both cases 
gives you the same values, then this rate is indeed 
the shadow price. As an example, suppose we per-
turb the RHS of the first constraint by +0.02 and 
-0.01. Resolving the problem after these changes 
using your LP solver, the optimal values are 2.02, 
and 1.09, respectively. Since the optimal value for 
the nominal problem (without any perturbation) 
is equal to 2, the rate of change for the two cases 
are: (2.02 - 2)/0.02 = 1, and (1.09 - 2)/(-0.01) = 
1, respectively. Since these two rates are the same, 
we conclude that the shadow price for the RHS of 
the first constraint is indeed equal to 1.

You must be careful whenever you round the value 
of shadow prices. For example, the shadow price 
of the resource constraint in the above problem 
is 8/3; therefore, if you wish to buy more of this 
resource, you should not pay additional price 
more than $2.66. Whenever you want to sell any 
unit of this resource, you should not sell it at an 
additional price below $2.67.

A similar error might occur whenever you 
round the limits on the sensitivity ranges. One 

must be careful because the upper limit and lower 
limit must be rounded down and up, respectively.

By default, most LP software such as Management 
Scientist (1999), and QM for Windows (2003), 
assume that all variables are non-negative.

To achieve this requirement, convert any unre-
stricted variable Xj to two non-negative variables 
by substituting y - Xj for every Xj. This increases 
the dimensionality of the problem by only one 
(introduce one y variable) regardless of how many 
variables are unrestricted.

If any Xj variable is restricted to be non-
positive, substitute - Xj for every Xj. This reduces 
the complexity of the problem.

Solve the converted problem and then substitute 
these changes back to get the values for the original 
variables and optimal value is straightforward. 
However, to convert sensitivity analyses including 
the shadow prices are not easy tasks. Consider the 
following LP problem:

Problem P4:
Maximize X1 +0X2
Subject To:  

X1 + X2 ≥ 0 
2X1 + X2 ≤ 2 
X1 ≥ 0 
X2 ≤ 0

Following the IAM solution algorithm, opti-
mal solution is at vertex X1 = 2, X2 = -2, which 
is depicted in Figure 5.

Performing the sensitivity analysis based on 
optimal vertex to maintaining the optimal vertex, 
we construct the following parametric RHS of 
binding constraints:



X1 + X2 = 0 + R1
2X1 + X2 = 2 + R2

The parametric optimal solution is:

X1 = 2 - R1 + R2
X2 = -2 + 2R1 - R2

We plug the parametric solution into objective 
function, we have:

X1 = 2 - R1 + R2

The shadow prices are the coefficients of the 
parametric optimal function, i.e., U1 = -1 and U2 = 
1, for the RHS of constraints 1 and 2, respectively. 
They are the rate of change in optimal value with 
respect to changes in the RHS of each constraint.

The shadow prices remain valid as long as this 
parametric optimal solution satisfy all the other 
constraints, i.e., X1 ≥ 0 and X2 ≤ 0. This gives the 
largest sensitivity region for the RHS.

2 – R1 + R2 ≥ 0
-2 + 2R1 – R2 ≤ 0

The sensitivity region is convex and non-empty, 
containing the origin (0, 0) and its vertex is at (0, 
-2), as shown in Figure 4.

Figure 6 presents the largest sensitivity region 
for the RHS for which the shadow prices remain 
unchanged, i.e., the optimal dual problem vertex 
remains optimal.

The ordinary sensitivity range is R1 ≤ 1 for 
the first RHS and R2 ≥ -2 for the second, as can 
be verified from the largest sensitivity region for 
the RHS depicted in Figure 4.

We now perform sensitivity analysis on the 
objective function coefficient. The dual problem 
is constructed in Table 5.

The optimal solution is the shadow prices (U1 
= -1, U2 = 1), with optimal value of 0U1 + 2U2 
= 2, same as primal, as expected.

U1 + 2U2 = 1 + C1
U1 + U2 = 0 + C2

The dual parametric solution is:

U1 = -1 – C1 + 2C2
U2 = 1 + C1 – C2

Figure 5. A typical feasible region for a non-
standard form LP

Figure 6. The largest sensitivity region for the 
RHS of first and second constraints



The solution must satisfy the other con-
straints:

-1 – C1 + 2C2 ≤ 0
1 + C1 – C2 ≥ 0

Figure 7 depicts the largest sensitivity region 
for the coefficients of objective function, i.e., 
the optimal solution remains unchanged, i.e., the 

optimal vertex for the primal problem remains 
optimal.

Set C2 = 0, then C1 ≥ -1, that is, the allowable 
decrease is -1, and allowable increase is big-M 
(i.e., a large nonspecific positive number). Set C1 
= 0, Then C2 ≤ 1/2, that is, the allowable increase 
is 0.5, and allowable decrease is -big-M.

The parametric objective function is:

0U1 + 2U2 = 2 + 2C1 – 2C2

With shadow prices (X1 = 2, X2 = -2) which 
is solution to the primal with optimal value of X1 
+0X2 = 2, as expected.

In the previous Sections we solved manually stan-
dard form problem P1 and the non-standard form 
problem P2 and then compared the results with 
the results obtained by some of the LP packages 
available in the market.

Unfortunately several of these educational LP 
software packages give misleading and incomplete 
results that could increase complexity for the man-
ager. For instance, the widely used LINDO (2003) 
LP software does not provide any direct warnings 
about the existence of multiple nor degenerate 
optimal solutions. Or the other hand WinQSB 
(2003) might indicates “Note: Alternate Solution 
Exists!!” when in fact there might be none. As a 
result, the final report on sensitivity analysis might 
not be valid in these cases, Lin (2010). Similarly, 
several other LP software packages have their own 
limitations listed in Tables 6 and 7.

Table 5.

The Primal Problem: Classifications
Maximize X1 +0X2 Maximization
Subject To:
X1 + X2 ≥ 0 Unusual
2X1 + X2 ≤ 2 Sensible
X1 ≥ 0 Sensible
X2 ≤ 0 Unusual
Therefore the dual formulation is:
The Dual Problem:
Minimize 0U1 + 2U2 Minimization
Subject To:
U1 + 2U2 ≥ 1 Sensible
U1 + U2 ≤ 0 Unusual
U1 ≤ 0 Unusual
U2 ≥ 0 Sensible

Figure 7. The largest sensitivity region for the 
coefficients of objective function



LINDO produces the output displayed in List-
ing 1 for the first numerical example P1, which 
is in standard form.

In this LINDO final report the dual prices are 
reported to be U1 = - 2.125, and U2 = 0.75, while 
we found earlier that the shadow prices are U1 = 
2.125, and U2 = - 0.75. Even the term Dual 
Prices (i.e., Dual solution, are the shadow Prices) 
is confusing as the values U1 = - 2.125, and U2 = 
0.75 are not a solution to the dual problem.

This misleading result is not limited to LINDO, 
unfortunately, at least two other LP software 
packages namely Quantitative Methods (QM 
2003) and Management Scientist (1999) produce 
misleading results.

When reading and interpreting Shadow Prices 
from software packages, managers must be es-
pecially attentive to the software description of 
the analysis.

There are no common accepted practices in 
Sensitivity Reports. For example, LINDO, Excel 
Solver and GAMS (2013) use different notation 
in their reports. In general, the terms shadow 
prices and dual prices are used interchangeable; 
however, if we compare the reports by LINDO and 
by hand-computation of numerical example P1, 

Table 7. The standard form numerical example P1 summary results as a base for comparison with 
popular software 

Variables Name
Optimal 
Solution

Objective 
Coefficient

Allowable 
Increase

Allowable 
Decrease

X1 375.0 18 M 6
X2 750.0 10 5 M

Shadow Slack Allowable Allowable
Constraints Price Surplus Increase Decrease

12X1 + 10X2 >= 12000 2.125 0 6000 2000
10X1 + 15X2 <= 15000 - 0.75 0 3000 5000

Table 6. Scope and limitations of some popular software 

Non-Negativity 
Conditions

Shadow Prices Optimal Solution to 
non-standard form 
problems

Sensitivity Ranges

Lindo 
(2003)

Imposed on all variables 
by default, but can be 
changed to un-restricted

Non-consistent May need conversion May need conversion 
which is not an easy task

WinQSB 
(2003)

A variable must be 
either non-negative or 
unrestricted.

Consistent May need conversion Unreliable

QM for Windows 
(2003)

All variables must be 
non-negative

Non-consistent May need conversion Difficult to Convert

Management Scientist 
(1999)

All variables must be 
non-negative

Non-consistent May need conversion May need conversion 
which is not an easy task

Excel Solver 
(20013)

All variables are non-
negative or un-restricted

Consistent Readily Available Reliable



we see that the dual prices from LINDO have the 
opposite sign of the shadow prices from Solver.

The Lindo (2013) Manual gives the following 
justification and interpretation:

…improve is a relative term. In a minimization 
problem, such as our example, interpreting the 
dual price requires some thought. The dual price 
…, is ….-. This means raising the right-hand side 
of the… constraint by one unit would cause the 
objective to “improve” by negative 100. That is, 
it would increase ... In other words, the marginal 

cost of providing one additional …in additional 
salary expense.” “Dual prices are sometimes 
called shadow prices, because they tell you how 
much you should be willing to pay for additional 
units of a resource. Going back to the Friday con-
straint, if we use the shadow price interpretation 
of the dual price, we can also say that we should 
be willing to pay …. to have an additional... If 
…available for less than .., then we might want 
to consider this option.” “As with reduced costs, 
dual prices are valid only over a limited range.

Listing 1. Input and output of LINDO software package for the first numerical example



Notice that unfortunately Excel Manual (2013) 
also uses the terms like “unit change”, “unit in-
crease” while defining shadow prices.

The dual value for a constraint is nonzero only 
when the constraint is equal to its bound. This is 
called a binding constraint, and its value was driv-
en to the bound during the optimization process. 
Moving the constraint left hand side’s value away 
from the bound will worsen the objective function’s 
value; conversely, “loosening” the bound will 
improve the objective. The dual value measures 
the increase in the objective function’s value per 
unit increase in the constraint’s bound.…. In the 
case of linear problems, the dual values remain 
constant over a range

Notice that the change by one unit may not be 
within the range, see sub-section 7.4.

Just to add to the confusion, other packages such 
as GAMS report marginal’s without any informa-
tion about their range of validity. (see Listing 2)

Subtle discrepancies like this one are unfor-
tunate. There is a pounding need for consensus 

on the vocabulary and structure on the output of 
optimization software packages.

Using Excel LP Solver produces the output 
shown in Listing 3 for the non-standard form 
numerical example. (see Table 8)

The results are comparable with our hand 
computation. However one must be careful in any 
generalization, since this comparison is done on 
a specific numerical example.

WinQSB Software produces the following 
outputs for the non-standard form numerical ex-
ample. The results with all constraints in explicit 
form, and then selecting the unrestricted option 
are shown in Listing 4.

The sensitivity ranges are not correct. They 
are differed from the results already obtained by 
hand computations.

When modeling a business problem, different 
conditions might require us to use parameters or 
inputs having very different order of magnitudes. 
For example, an LP from manufacturing industry 

Listing 2. Excerpt from GAMS output for the first numerical example that is in standard form

Table 8. Non-standard form numerical example P2 summary results

Variables Name
Optimal 
Solution

Objective 
Coefficient

Allowable 
Increase

Allowable 
Decrease

X1 2 1 M 1
X2 -2 0 0.5 M

Constraints Name
Shadow 
 Price

Slack 
Surplus

Allowable 
Increase

Allowable 
Decrease

Constraint 1: X1 + X2 >= 0 -1 0 1 M
Constraint 2: 2X1 + X2 <= 2 1 0 M 2



Listing 3. Excel result with all constraint in explicit form, and then selecting the unrestricted option

Name
Final 
Value

Reduced 
Cost

Objective 
Coefficient

Allowable 
Increase

Allowable 
Decrease

X1 2 0 1 1E+30 1
X2 -2 0 0 0.5 1E+30

Final Shadow Constraint Allowable Allowable
Name Value Price R.H. Side Increase Decrease
Constraint 3: X1 >= 0 2 0 0 2 1E+30
Constraint 4: X2 <= 0 -2 0 0 1E+30 2
Constraint 1: X1 + X2 >= 0 0 -1 0 1 1E+30
Constraint 2: 2X1 + X2 <= 0 2 1 2 1E+30 2

Listing 4. WinQSB Input and Its Combined report



might include dollar amounts in millions and at 
the same time might include quality based con-
ditions in the range of nanometers (one billionth 
of a meter). If an LP is modeled using the such 
units then the solvers such as Lindo and Excel 
gives us warning about poor scaling but then also 
gives some updated values. Frontline Solvers (the 
developers of Excel Solvers) admit to this limita-
tion and the website reports that:

The effects of poor scaling in a large, complex 
optimization model can be among the most dif-
ficult problems to identify and resolve. It can 
cause Solver to return messages such as ‘Solver 
could not find a feasible solution’, ‘Solver could 
not improve the current solution,’ or even ‘The 
linearity conditions required by this LP Solver are 
not satisfied,’ with results that are suboptimal or 
otherwise very different from your expectations. 
(Frontline Solvers, 2013)

Unfortunately, Solver does not always alert the 
user about any issues with the problem. The fol-
lowing example clearly is prone to scaling issues 
with a very large coefficient for X3 in the third 
constraint. (Depending on the computer a larger or 
smaller coefficient yields the issue describe here). 
However, when the problem is attempted with 
Solver, Solver sometimes yields an error message 
as the ones described earlier, but in most cases, 
it does not give any error message and reports as 
optimal an infeasible solution.

Numerical Example:
Minimize X2
Subject to:  

10X1 – X2 ≤ 0 
X1 = 1 
X1 – 100000
X3 ≤ 0  X3 ≤1 
X3 is positive integer

Solver might report as the optimal solution X1 
= 1, X2 = 10, and X3 = 0. This solution violates 
constraint (3). The correct solution is X1 = 1, X2 
= 10, and X3 =1. Therefore, we have numerical 
instability caused by too large values.

Excel recommends that to avoid such occur-
rences a model must only be allowed to vary by 
an order of magnitude of 3 (i.e. 1 to 1000). Excel 
allows the use of “Use Automatic Scaling” feature 
for automatically rescaling the values but it cannot 
rescale the problems “intelligently”. Hence if the 
automatic rescaling feature is used the outcomes 
could unknowingly become worse rather than 
better. Automatic rescaling can also slowly down 
the optimization process significantly (Winston 
and Albright, 2011). Similar limitations exist for 
Lindo also (Martin 1999) and may exist for several 
other solvers as well. However these limitations 
are largely and conveniently ignored.

One of the possible reasons for such ignorance 
could be due to the high expectations and the prom-
ise of convenience offered by LPs. Using LPs, a 
manager can get an optimal solution even when the 
problem includes a huge variety of factors (inputs 
and constraints) which could be coming from a 
wide variety of domains. For large and complex 
LPs, the managers and the coders would want to 
reduce the complexity associated with LPs and 
would prefer not to change the units for the sake of 
convenience. For example when developing LPs 
for manufacturing sector a manager (and even the 
coders) might prefer to use dollars values directly 
in the model instead of converting them to mil-
lions (which reduces the order of magnitude by 
six but then increase the chance of getting optimal 
dollar values in decimals) and use it with values 
of quality tolerance in a fraction of millimeter. 
Such instances are common and widespread. The 
authors lament that majority of books violates the 
ideal requirement of order of magnitude in the 
discussions and leaves the mangers very much 
vulnerable to being unknowingly dependent on 
sub-optimal results.



The best approach recommended to deal with 
this situation is to use consistent scaling at the 
time of modeling. Managers should be aware of 
this issue and use consistent units for products and 
constraints. For example, if working with multiple 
monetary constraints they all should be scale in 
hundreds or thousands. Alternative if working 
with multiple products similar units should be 
used for all the products.

Almost all research work in LP literature starts 
with an assumption of a non-degenerate primal/
dual LP. Degeneracy is the case of having multiple 
vertices at the same point.

The necessary condition for the existence of LP 
degeneracy: If at optimal point the number of bind-
ing constraints is more than n (i.e., the dimension 
of the problem) then the solution to an LP might 
be degenerate. 

Resolution: Double-check the coefficients of all 
constraints including the RHS values. There could 
have been rounding error.

Consider the following n=2 dimensional LP 
problem:

Numerical Example P2:
Maximize X2  
Subject to:   

X1 + X2 = 5  
-X1 + X2 ≤1   
X1 ≥ 0, X2 ≥ 0

This problem has a unique, non-degenerate opti-
mal solution at (X1 = 2, X2 = 3). However, if one 
rewrites the equality constraint in the form of two 
inequalities, the equivalent problem is:

Maximize X2 
Subject to:   

X1 + X2 ≤ 5  
X1 + X2 ≥ 5 
-X1 + X2 ≤ 1   
X1 ≥ 0, X2 ≥ 0

Clearly, the optimal solution (2, 3) now makes 
three constraints binding. Three is more than the 
dimension n=2 of this problem; therefore one 
may incorrectly conclude that this solution is a 
degenerate optimal solution. This simple numeri-
cal example serves the purpose of the necessary 
(but not a sufficient) condition for a degenerate 
optimal solution.

An occurrence of degeneracy can have a signifi-
cant impact on the shadow prices and may cause 
oddities in the output provided by LP solvers. 
Moreover, the usual sensitivity analyses do not 
provide complete information in the degenerate 
case; that is, the information one obtains from 
most LP packages is a subset of the true sensitivity 
intervals. There are more effective approaches to 
cope with this problem; however, they are com-
putationally much more involved, Lin (2010). 
Almost all software packages do not alert the user 
that the problem is degenerate.

Numerical Example P4:
Maximize C(X) = X1 + X2  
Subject to X1 ≤ 1   

X2 ≤ 1   
X1 + X2 ≤ 2  
X1 ≥ 0   
X2 ≥ 0

The optimal solution is X1 = 1, and X2 = 1, at 
which all three constraints are binding. We are 
interested in finding out how far the RHS of 



binding constraints can change while maintain-
ing the degenerate optimal solution. Because of 
degeneracy, there is dependency among these 
constraints at the binding position, that is:

X1 = 1    
X2 = 1    
X1 + X2 = 2 

In order to maintain the degenerate vertex while 
changing the RHS values, the RHS proportionately 
must be changed to the coefficients of the decision 
variables. The resulting parametric RHS system 
of equations is as follows:

X1 = 1 + 1r1 + 0r2  
X2 = 1 + 0r1 + 1r2  
X1 + X2 = 2 + 1r1 + 1r2

The parameters on the RHS allow for the de-
generate vertex to move maintaining its structure. 
Since there are two decision variables, any two 
of the parametric equations can be used to find 
the parametric degenerate optimal solution. For 
example, the first two equations provide (X1 = 1 
+ r1, X2 = 1 + r2), which clearly satisfies the third 
one. As mentioned earlier, for larger problems 
one may use JavaScript software: http://home.
ubalt.edu/ntsbarsh/Business-stat/otherapplets/
PaRHSSyEqu.htm

The perturbed optimal value is C(X) = X1 + 
X2 = 2 + r1 + r2. In order for this vertex to remain 
optimal, it must satisfy all other constraints that 
have not been used. For this numerical example, 
the non-negativity conditions are the remaining 
constraints; therefore, we obtain the following 
conditions for r1 and r2:

{r1 and r2 | r1 ≥ -1, r2 ≥ -1}.

Notice that while the changes satisfy these 
conditions the degenerate solution remain degen-
erate, for any change outside of this set ensures 
the manager that the solution is not any longer 

degenerate therefore the sensitivity and shadow 
prices are valid.

The necessary condition for the existence of 
LP multiple solutions: If in the “software final 
report” the total number of zeros in the Reduced 
Cost, together with number of zeros in the Shadow 
Price columns, exceeds the number of constraints, 
then you might have multiple solutions. Sensitivity 
analysis is not applicable. That is, the sensitiv-
ity analysis based on one optimal solution may 
not be valid for the others, Lin (2010). Software 
package like LINDO alert the user if a problem 
has multiple solutions, while others like Excel LP 
Solver do not. 

Resolution: Check the coefficients in the objective 
function and the coefficients of the constraints. 
There could have been rounding error.

Numerical Example P5:

Consider the following LP:

Maximize C(X) = 6X1 + 4X2  
Subject to X1 + 2X2 ≤ 16   

3X1 + 2X2 ≤ 24  
X1 ≥ 0 
X2 ≥ 0

This LP has two optimal vertices; namely, (X1 
= 8, X2 = 0) and (X1 = 4, X2 = 6). Notice that 
the existence of two solutions means we have in-
numerable optimal solutions. For example, for the 
above problem, for all parameter a, 0 ≤ a ≤ 1, the 
following convex combinations are also optimal:

X1 = 8a + 4(1 - a) = 4 + 4a,
X2 = 0a + 6(1- a) = 6 - 6a.



The Dual LP is:

Minimize 16U1 + 24U2  
Subject to U1 + 3U2 ≥ 6   

2U1 + 2U2 ≥ 4  
U1 ≥ 0 
U2 ≥ 0

This dual LP has a degenerate optimal solu-
tion (U1 = 0, U2 = 2). In order to maintain the 
degenerate vertex while changing the RHS, the 
RHS values must be changed in proportion to 
the coefficients of the decision variables. The 
parametric RHS system of equations is:

U1 + 3U2 = 6 + 1c1 + 3c2  
2U1 + 2U2 = 4 + 2c1 + 2c2  
U1 = 0 + 1c1

As before, any two of the parametric equa-
tions can be used to find the parametric degener-
ate optimal solution. For example, the first two 
equations provide U1 = c1 and U2 = 2 + c2, which 
clearly satisfies the third equation. For this vertex 
to remain optimal, it must satisfy all other con-
straints that have not been used. For this example, 
the non-negativity condition, U2 ≥ 0, is the only 
remaining constraint. Therefore, we obtain the 
following conditions for c1 and c2:

{c1, c2 | c2 ≥ -2}.

Moreover, the perturbed cost coefficients (6 
+ c1)X1 + (4 + c2)X2 must be proportional to its 
parallel constraint 3X1 + 2X2 ≤ 24, i.e., (6 + c1)/3 
= (4 + c2)/2. This simplifies to 2c1 = 3c2. Putting 
together all these conditions, we obtain the largest 
sensitivity set as follows:

{c1, c2 | c2 ≥ -2, 2c1 = 3c2}.

Notice that, while the changes satisfy these 
conditions, the problem has multiple solutions; 
for any change outside of this set ensures the 

manager that the problem does not any longer 
have multiple solutions therefore the sensitivity 
and shadow prices are valid.

A curious property called the more-for-less (MFL) 
or less-for-more (LFM) phenomenon is associated 
with some linear programs (LP). The existing 
literature has demonstrated the practicality and 
value of identifying cases where the paradoxical 
situation exists, Arsham (1996). For example, 
consider the following production LP.

Maximize C(X) = X1 + 3X2 + 2X3 
Subject to X1 + 2X2 + X3 = 4   

3X1 + 2X3 = 9  
X1 ≥ 0, X2 ≥ 0, X3 ≥ 0

The optimal solution for this LP occurs at vertex 
X1 = 1, X2 = 0, X3 = 3, with the maximum value 
of objective function as $7.

Note that, if the RHS of second constraint is 
increased to 12, then the new optimal solution gives 
the optimal value of C(X) = $4; i.e., a decrease in 
profit while working more hours. This situation 
arises frequently in LP models and is known as 
the “more-for-less” paradox where further analysis 
could bring significant reduction in costs. We ap-
ply the primal sensitivity algorithm to solve the 
RHS perturbed equation constraints with X2 = 0,

X1 + X3 = 4 + r1
3X1 + 2X3 = 9 + r2

The parametric solution is X1 = 1 – 2r1 + r2, 
X2 = 0, and X3 = 3 + 3r1 - r2, with the optimal 
parametric solution as C(X) = 7 + 4r1 - r2. Plug-
ging the parametric solution into other non-binding 
constraints, we obtain



X1 = 1 – 2r1 + r2 ≥ 0
X3 = 3 + 3r1 - r2 ≥ 0

Looking at the parametric optimal function, no-
tice that the shadow price of the second constraint, 
coefficient of r2, is negative. To find out the best 
number of hours, one must work to maximize the 
profit function 7 + 4r1 - r2, by setting r1 = 0 and 
finding the largest negative value for r2. Therefore, 
the constraints reduce to:

X1 = 1 + r2 ≥ 0
X3 = 3 - r2 ≥ 0.

The largest negative value is r2 = -1. This gives 
the optimal solution of (X1 = 0, X2 = 0, X3 = 4) 
with the optimal value of C(X) = 8. Therefore, 
the optimal strategy is to work 8 hours instead 
of 9 hours.

Proposition 3: A necessary and sufficient condi-
tion for the existence of a less-for-more (more-for-
less) solution to a maximization (minimization) 
problem is the existence of an equality constraint 
with a negative shadow price. 

Theorem 1: We are in LFM or MFL situation 
iff at least one of ri’s in the above parametric LP 
formulation is negative [positive]

A business environment is dynamic. A problem 
solution is valid in a limited time window only 
and is subject to revision in the next time win-
dow. Generally, a constraint set is less subject to 
change as compared to the objective function. For 
example, in production and transportation prob-
lems, the capacity constraints may remain rather 
stable over a period of time. On the other hand, 
profit coefficients of the objective function are 
inversely related to the price, which may fluctuate, 

being determined by the market conditions and 
competition. The proposed method can be used 
to optimize LP problems with varying objective 
function. Given a system of linear equalities and/
or inequalities, the method provides all vertices 
of the feasible region. By means of examples, we 
have illustrated the use of the Improved Algebraic 
Method to efficiently derive the slack and surplus 
amounts for the resources of an LP. The parametric 
representation quickly provides all dual prices to 
carry out analysis for desirability of obtaining ad-
ditional resources. The parametric representation 
also allows one to study variability (i.e, uncertain-
ties) of the coefficients of the objective functions 
and the right-hand-side of constraints.

We provide a comprehensive managerial 
coverage of linear programming post-optimality 
analysis. The collections of presented tools are 
easy to understand, easy to implement (for small 
size problems), and provide useful information to 
the manager. Therefore this collection could prove 
valuable to involve the manager throughout the 
decision-making process to understand therefore 
being implemented.

It is the proposed IAM approach to solve a sys-
tem of inequalities that provides a bridge between 
the graphical method and the simplex method. 
The simplex method is an efficient computer 
implementation of algebraic methods and almost 
all the LP software use it.

All the LP tools are covered within the deci-
sion variable space; no additional variables such 
as slack/surplus/artificial variables or constraints 
are added.

The proposed approach provides useful infor-
mation for the manager such as shadow prices and 
expands the sensitivity analysis scope by proving 
sensitivity regions rather than ranges that LP soft-
ware provides. Under the proposed methods, the 
elaborate fundamental LP theorems fall naturally 
out as by-products. Moreover, it can also be used 
to fill the gap between the graphical method of 
solving LP problems and the simplex method.
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