Part of Session 4 assignments

LINDO Implementation of Wilson Problem

The mathematical model for the Wilson Problem

Maximize 7X1+10X2 (objective function)

Subject to:

 $X1 \le By$ default LINDO assumes 500 (production limit of baseballs) $X2 \le 500$ (production limit of softballs)

 $5X1+6X2 \le 3600$ (Material (Cowhide) limits)

 $X1+2X2 \le 960$ (time limits on production)

 $X1, X2 \ge 0$ (Non-negativity)

LINDO Input:

Max 7X1+10X2

S.T. X1 < 500 X2 < 500 5X1+6X2 < 3600 X1+2X2 < 960

END

Notices:

- 1. By default LINDO assumes the non-negativity conditions (therefore there no need to enter them).
- 2. By default LINDO knows that inequalities are closed type, that is (\leq) should be entered as (< =) or simply <. Similarly for any (\geq) constraints.

When you as for the solution, LINDO ask if you are interested in "Sensitivity Range?), if you choose yes, the following will be the output. You may Block the output and Copy it then Paste and to a WORD file for managerial analysis.

At this stage of out learning, we recognize the Optimal Solution of (X1=360, X2=300) with Optimal of \$5520. This information agrees with your last Graphical Solution.

We will interpret all other elements in its print out, for the Manager soon after the Midterm-Exam.

Solution from LINDO:

NO. ITERATIONS=

LP OPTIMUM FOUND AT STEP

OBJECTIVE FUNCTION VALUE

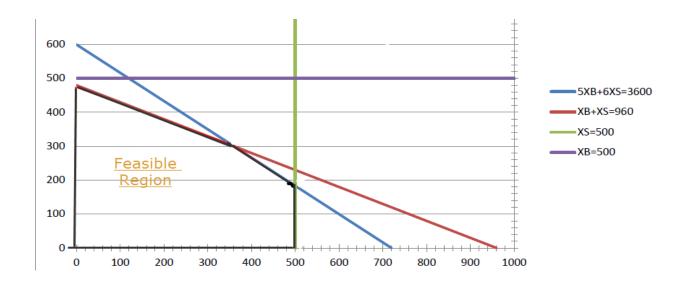
1)	5520.000	
VARIABLE	VALUE	REDUCED COST
X1	360.000000	0.000000
X2	300.000000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	140.000000	0.000000
3)	200.000000	0.000000
4)	0.000000	1.000000
5)	0.000000	2.000000

2

RANGES IN WHICH THE BASIS IS UNCHANGED:

		OBJ COEFFICIENT R	ANGES
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
X1	7.000000	1.333333	2.000000
X2	10.000000	4.000000	1.600000
		RIGHTHAND SIDE RA	NGES
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
2	500.000000	INFINITY	140.000000
3	500.000000	INFINITY	200.000000
4	3600.000000	280.000000	720.000000
5	960.000000	160.000000	93.333336

Graph:



Coordinates of feasible region:

Point	Х	у
Α	0	0
В	0	480
С	360	300
D	500	183
E	500	0

Optimal Solution to the Wilson problem: For Wilson to maximize the daily profit they should produce 360 dozens of baseballs and 300 dozen of softballs for a daily profit maximum of \$5520