Comparing Two Random Variables

Probability Estimation for Comparing
Two Random Variables with Applications

Versión en Español
Colección de JavaScript Estadísticos en los E.E.U.U.
Sitio Espejo para América Latina

This site is a part of the JavaScript E-labs learning objects for decision making. Other JavaScript in this series are categorized under different areas of applications in the MENU section on this page.

Professor Hossein Arsham   

The following JavaScript estimates the probability that one random variable being greater than the other based on two sets of independent random observations.

Consider an investment problem of an insurance company who is facing a risk process from its own business and can additionally invest money into a stock index. This index is threatened by a possible market crash but otherwise is follows an unknown probabilistic pattern, therefore it should be treated as a non-parametric statistical decision.

Enter The Constant Value z for estimating P [X + z >Y}, and then click on either Calculate buttons.

Enter your up-to-80 sample data from the first population, and the second population in the following two tables, respectively. Blank entry boxes are not included in the calculations but zeros are.

In entering your data to move from cell to cell in the data-matrix use the Tab key not arrow or enter keys.

To edit your data, including add/change/delete, you do not have to click on the "clear" button, and re-enter your data all over again. You may simply add a number to any blank cell, change a number to another in the same cell, or delete a number from a cell. After editing, then click the "calculate" button.

For extensive edit or to use the JavaScript for a new set of data, then use the "clear" button.

The Constant Value: z
Mean 1
Mean 2
Estimated Probability

For Technical Details, Back to:
Statistical Thinking for Decision Making

Kindly email your comments to:
Professor Hossein Arsham

Estimación de la Probabilidad y Aplicaciones para Comparar Dos Variables Aleatorias
Nota para los usuarios de habla hispana:
El siguiente JavaScript estima la probabilidad de que una variable aleatoria sea mas grande que otra basado en dos grupos de observaciones aleatorias independientes.
Introduzca hasta 80 datos muestrales. Luego presione el botón Calculate (Calcular) para obtener los resultados. Los espacios en blanco no son asumidos como ceros ni incluidos en los cálculos, pero los números cero si se incluyen. Esta matriz reconoce al punto (.) como el signo decimal en vez de la coma (,).
Mientras entre sus datos en la matriz, muévase de celda a celda usando la tecla Tab, no use la flecha o la tecla de entrada.
Introduzca el Valor Z constante para estimar P [X + z >Y}, y luego presione el botón Calculate (Calcular).
Para editar sus datos (incluyendo agregar, cambiar o borrar), usted no tiene que presionar el botón Clear (Limpiar) para vaciar la matriz e introducir los datos de nuevo. Usted puede simplemente agregar, cambiar o borrar números en cualquier celda. Después de editar, presione el botón Calculate (Calcular).
Para una edición de datos mas extensiva, o para usar la matriz e incluir nuevos datos utilice el botón Clear (Limpiar).
Los resultados que usted obtendrá de esta matriz son:
The Constant Value: Z = Valor Z Constante (Usted debe ingresar este dato)
Mean 1 = Media 1
Mean 2 = Media 2
U- Statistic = Estadístico U
Estimated Probability = Probabilidad Estimada

Para Detalles Técnicos y Aplicaciones, Vuelta a:
Razonamiento Estadístico para la Toma de Decisiones Gerenciales


Decision Tools in Economics & Finance

Probabilistic Modeling


The Copyright Statement: The fair use, according to the 1996 Fair Use Guidelines for Educational Multimedia, of materials presented on this Web site is permitted for non-commercial and classroom purposes only.
This site may be translated and/or mirrored intact (including these notices), on any server with public access. All files are available at for mirroring.

Kindly e-mail me your comments, suggestions, and concerns. Thank you.

Professor Hossein Arsham   

Back to:

Dr Arsham's Home Page

EOF: © 1994-2015.